Quicklists
public 01:34:43

Bruce Donald : Some mathematical and computational challenges arising in structural molecular biology

  -   Applied Math and Analysis ( 304 Views )

Computational protein design is a transformative field with exciting prospects for advancing both basic science and translational medical research. New algorithms blend discrete and continuous mathematics to address the challenges of creating designer proteins. I will discuss recent progress in this area and some interesting open problems. I will motivate this talk by discussing how, by using continuous geometric representations within a discrete optimization framework, broadly-neutralizing anti-HIV-1 antibodies were computationally designed that are now being tested in humans - the designed antibodies are currently in eight clinical trials (See https://clinicaltrials.gov/ct2/results?cond=&term=VRC07&cntry=&state=&city=&dist= ), one of which is Phase 2a (NCT03721510). These continuous representations model the flexibility and dynamics of biological macromolecules, which are an important structural determinant of function. However, reconstruction of biomolecular dynamics from experimental observables requires the determination of a conformational probability distribution. These distributions are not fully constrained by the limited information from experiments, making the problem ill-posed in the sense of Hadamard. The ill-posed nature of the problem comes from the fact that it has no unique solution. Multiple or even an infinite number of solutions may exist. To avoid the ill-posed nature, the problem must be regularized by making (hopefully reasonable) assumptions. I will present new ways to both represent and visualize correlated inter-domain protein motions (See Figure). We use Bingham distributions, based on a quaternion fit to circular moments of a physics-based quadratic form. To find the optimal solution for the distribution, we designed an efficient, provable branch-and-bound algorithm that exploits the structure of analytical solutions to the trigonometric moment problem. Hence, continuous conformational PDFs can be determined directly from NMR measurements. The representation works especially well for multi-domain systems with broad conformational distributions. Ultimately, this method has parallels to other branches of applied mathematics that balance discrete and continuous representations, including physical geometric algorithms, robotics, computer vision, and robust optimization. I will advocate for using continuous distributions for protein modeling, and describe future work and open problems.

public 01:24:47

Franca Hoffmann : Gradient Flows: From PDE to Data Analysis.

  -   Applied Math and Analysis ( 184 Views )

Certain diffusive PDEs can be viewed as infinite-dimensional gradient flows. This fact has led to the development of new tools in various areas of mathematics ranging from PDE theory to data science. In this talk, we focus on two different directions: model-driven approaches and data-driven approaches. In the first part of the talk we use gradient flows for analyzing non-linear and non-local aggregation-diffusion equations when the corresponding energy functionals are not necessarily convex. Moreover, the gradient flow structure enables us to make connections to well-known functional inequalities, revealing possible links between the optimizers of these inequalities and the equilibria of certain aggregation-diffusion PDEs. We present recent results on properties of these equilibria and long-time asymptotics of solutions in the setting where attractive and repulsive forces are in competition. In the second part, we use and develop gradient flow theory to design novel tools for data analysis. We draw a connection between gradient flows and Ensemble Kalman methods for parameter estimation. We introduce the Ensemble Kalman Sampler - a derivative-free methodology for model calibration and uncertainty quantification in expensive black-box models. The interacting particle dynamics underlying our algorithm can be approximated by a novel gradient flow structure in a modified Wasserstein metric which reflects particle correlations. The geometry of this modified Wasserstein metric is of independent theoretical interest.

public 02:29:55

Leonid Berlyand : Flux norm approach to finite-dimensional homogenization approximation with non-separated scales and high contrast

  -   Applied Math and Analysis ( 164 Views )

PDF Abstract
Classical homogenization theory deals with mathematical models of strongly inhomogeneous media described by PDEs with rapidly oscillating coefficients of the form A(x/\epsilon), \epsilon → 0. The goal is to approximate this problem by a homogenized (simpler) PDE with slowly varying coefficients that do not depend on the small parameter \epsilon. The original problem has two scales: fine O(\epsilon) and coarse O(1), whereas the homogenized problem has only a coarse scale. The homogenization of PDEs with periodic or ergodic coefficients and well-separated scales is now well understood. In a joint work with H. Owhadi (Caltech) we consider the most general case of arbitrary L∞ coefficients, which may contain infinitely many scales that are not necessarily well-separated. Specifically, we study scalar and vectorial divergence-form elliptic PDEs with such coefficients. We establish two finite-dimensional approximations to the solutions of these problems, which we refer to as finite-dimensional homogenization approximations. We introduce a flux norm and establish the error estimate in this norm with an explicit and optimal error constant independent of the contrast and regularity of the coefficients. A proper generalization of the notion of cell problems is the key technical issue in our consideration. The results described above are obtained as an application of the transfer property as well as a new class of elliptic inequalities which we conjecture. These inequalities play the same role in our approach as the div-curl lemma in classical homogenization. These inequalities are closely related to the issue of H^2 regularity of solutions of elliptic non-divergent PDEs with non smooth coefficients.