Quicklists
public 01:34:53
public 01:24:47

Franca Hoffmann : Gradient Flows: From PDE to Data Analysis.

  -   Applied Math and Analysis ( 175 Views )

Certain diffusive PDEs can be viewed as infinite-dimensional gradient flows. This fact has led to the development of new tools in various areas of mathematics ranging from PDE theory to data science. In this talk, we focus on two different directions: model-driven approaches and data-driven approaches. In the first part of the talk we use gradient flows for analyzing non-linear and non-local aggregation-diffusion equations when the corresponding energy functionals are not necessarily convex. Moreover, the gradient flow structure enables us to make connections to well-known functional inequalities, revealing possible links between the optimizers of these inequalities and the equilibria of certain aggregation-diffusion PDEs. We present recent results on properties of these equilibria and long-time asymptotics of solutions in the setting where attractive and repulsive forces are in competition. In the second part, we use and develop gradient flow theory to design novel tools for data analysis. We draw a connection between gradient flows and Ensemble Kalman methods for parameter estimation. We introduce the Ensemble Kalman Sampler - a derivative-free methodology for model calibration and uncertainty quantification in expensive black-box models. The interacting particle dynamics underlying our algorithm can be approximated by a novel gradient flow structure in a modified Wasserstein metric which reflects particle correlations. The geometry of this modified Wasserstein metric is of independent theoretical interest.

public 01:14:44

Johann Guilleminot : Stochastic Modeling and Simulations of Random Fields in Computational Nonlinear Mechanics

  -   Applied Math and Analysis ( 87 Views )

Accounting for system-parameter and model uncertainties in computational models is a highly topical issue at the interface of computational mechanics, materials science and probability theory. In addition to the construction of efficient (e.g. Galerkin-type) stochastic solvers, the construction, calibration and validation of probabilistic representations are now widely recognized as key ingredients for performing accurate and robust simulations. This talk is specifically focused on the modeling and simulation of spatially-dependent properties in both linear and nonlinear frameworks. Information-theoretic models for matrix-valued random fields are first introduced. These representations are typically used, in solid mechanics, to define tensor-valued coefficients in elliptic stochastic partial differential operators. The main concepts and tools are illustrated, throughout this part, by considering the modeling of elasticity tensors fluctuating over nonpolyhedral geometries, as well as the modeling and identification of random interfaces in polymer nanocomposites. The latter application relies, in particular, on a statistical inverse problem coupling large-scale Molecular Dynamics simulations and a homogenization procedure. We then address the probabilistic modeling of strain energy functions in nonlinear elasticity. Here, constraints related to the polyconvexity of the potential are notably taken into account in order to ensure the existence of a stochastic solution. The proposed framework is finally exemplified by considering the modeling of various soft biological tissues, such as human brain and liver tissues.