Quicklists
public 01:14:42

Rongjie Lai : Understanding Manifold-structured Data via Geometric Modeling and Learning

  -   Applied Math and Analysis ( 105 Views )

Analyzing and inferring the underlying global intrinsic structures of data from its local information are critical in many fields. In practice, coherent structures of data allow us to model data as low dimensional manifolds, represented as point clouds, in a possible high dimensional space. Different from image and signal processing which handle functions on flat domains with well-developed tools for processing and learning, manifold-structured data sets are far more challenging due to their complicated geometry. For example, the same geometric object can take very different coordinate representations due to the variety of embeddings, transformations or representations (imagine the same human body shape can have different poses as its nearly isometric embedding ambiguities). These ambiguities form an infinite dimensional isometric group and make higher-level tasks in manifold-structured data analysis and understanding even more challenging. To overcome these ambiguities, I will first discuss modeling based methods. This approach uses geometric PDEs to adapt the intrinsic manifolds structure of data and extracts various invariant descriptors to characterize and understand data through solutions of differential equations on manifolds. Inspired by recent developments of deep learning, I will also discuss our recent work of a new way of defining convolution on manifolds and demonstrate its potential to conduct geometric deep learning on manifolds. This geometric way of defining convolution provides a natural combination of modeling and learning on manifolds. It enables further applications of comparing, classifying and understanding manifold-structured data by combing with recent advances in deep learning.

public 01:24:58

Ju Sun : When Are Nonconvex Optimization Problems Not Scary?

  -   Applied Math and Analysis ( 143 Views )

Many problems arising from scientific and engineering applications can be naturally formulated as optimization problems, most of which are nonconvex. For nonconvex problems, obtaining a local minimizer is computationally hard in theory, never mind the global minimizer. In practice, however, simple numerical methods often work surprisingly well in finding high-quality solutions for specific problems at hand.

In this talk, I will describe our recent effort in bridging the mysterious theory-practice gap for nonconvex optimization. I will highlight a family of nonconvex problems that can be solved to global optimality using simple numerical methods, independent of initialization. This family has the characteristic global structure that (1) all local minimizers are global, and (2) all saddle points have directional negative curvatures. Problems lying in this family cover various applications across machine learning, signal processing, scientific imaging, and more. I will focus on two examples we worked out: learning sparsifying bases for massive data and recovery of complex signals from phaseless measurements. In both examples, the benign global structure allows us to derive geometric insights and computational results that are inaccessible from previous methods. In contrast, alternative approaches to solving nonconvex problems often entail either expensive convex relaxation (e.g., solving large-scale semidefinite programs) or delicate problem-specific initializations.

Completing and enriching this framework is an active research endeavor that is being undertaken by several research communities. At the end of the talk, I will discuss open problems to be tackled to move forward.

public 01:14:44

Geoffrey Schiebinger : Analyzing Developmental Stochastic Processes with Optimal Transport

  -   Applied Math and Analysis ( 111 Views )

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool to sample the complexity of large populations of cells and observe biological processes at unprecedented molecular resolution. This offers the exciting prospect of understanding the molecular programs that guide cellular differentiation during development. Here, we introduce Waddington-OT: a mathematical framework for understanding the temporal dynamics of development based on snapshots of expression profiles. The central challenge in analyzing these data arises from the fact that scRNA-Seq is destructive, which means that one cannot directly measure the trajectory of any given cell over time. We model the population of developing cells mathematically with a time-varying probability distribution (i.e. stochastic process) on a high-dimensional gene expression space, and we propose to recover the temporal coupling of the process with optimal transport. We demonstrate the power of Waddington-OT by applying the approach to study 315,000 scRNA-seq profiles collected at 40 time points over 16 days during reprogramming of fibroblasts to induced pluripotent stem cells. We construct a high-resolution map of reprogramming that rediscovers known features; uncovers new alternative cell fates including neural- and placental-like cells; predicts the origin and fate of any cell class; and implicates regulatory models in particular trajectories. Of these findings, we highlight Obox6, which we experimentally show enhances reprogramming efficiency. Our approach provides a general framework for investigating cellular differentiation.

public 01:24:58

Ken Kamrin : A hierarchy of continuum models for granular flow

  -   Applied Math and Analysis ( 91 Views )

Granular materials are common in everyday life but are historically difficult to model. This has direct ramifications owing to the prominent role granular media play in multiple industries and terrain dynamics. One can attempt to track every grain with discrete particle methods, but realistic systems are often too large for this approach and a continuum model is desired. However, granular media display unusual behaviors that complicate the continuum treatment: they can behave like solid, flow like liquid, or separate into a "gas", and the rheology of the flowing state displays remarkable subtleties that have been historically difficult to model. To address these challenges, in this talk we develop a family of continuum models and solvers, permitting quantitative modeling capabilities for a variety of applications, ranging from general problems to specific techniques for problems of intrusion, impact, driving, and locomotion in grains.

To calculate flows in general cases, a rather significant nonlocal effect is evident, which is well-described with our recent nonlocal model accounting for grain cooperativity within the flow rule. This model enables us to capture a number of seemingly disparate manifestations of particle size-effects in granular flows including: (i) the wide shear-band widths observed in many inhomogeneous flows, (ii) the apparent strengthening exhibited in thin layers of grains, and (iii) the fluidization observed due to far-away motion of a boundary. On the other hand, to model only intrusion forces on submerged objects, we will show, and explain why, many of the experimentally observed results can be captured from a much simpler tension-free frictional plasticity model. This approach gives way to some surprisingly simple general tools, including the granular Resistive Force Theory, and a broad set of scaling laws inherent to the problem of granular locomotion. These scalings are validated experimentally and in discrete particle simulations suggesting a new down-scaled paradigm for granular locomotive design, on earth and beyond, to be used much like scaling laws in fluid mechanics.

public 01:14:44

Johann Guilleminot : Stochastic Modeling and Simulations of Random Fields in Computational Nonlinear Mechanics

  -   Applied Math and Analysis ( 87 Views )

Accounting for system-parameter and model uncertainties in computational models is a highly topical issue at the interface of computational mechanics, materials science and probability theory. In addition to the construction of efficient (e.g. Galerkin-type) stochastic solvers, the construction, calibration and validation of probabilistic representations are now widely recognized as key ingredients for performing accurate and robust simulations. This talk is specifically focused on the modeling and simulation of spatially-dependent properties in both linear and nonlinear frameworks. Information-theoretic models for matrix-valued random fields are first introduced. These representations are typically used, in solid mechanics, to define tensor-valued coefficients in elliptic stochastic partial differential operators. The main concepts and tools are illustrated, throughout this part, by considering the modeling of elasticity tensors fluctuating over nonpolyhedral geometries, as well as the modeling and identification of random interfaces in polymer nanocomposites. The latter application relies, in particular, on a statistical inverse problem coupling large-scale Molecular Dynamics simulations and a homogenization procedure. We then address the probabilistic modeling of strain energy functions in nonlinear elasticity. Here, constraints related to the polyconvexity of the potential are notably taken into account in order to ensure the existence of a stochastic solution. The proposed framework is finally exemplified by considering the modeling of various soft biological tissues, such as human brain and liver tissues.