Quicklists
public 01:34:43

Ruiwen Shu : Flocking hydrodynamics with external potentials

  -   Applied Math and Analysis ( 118 Views )

We study the large-time behavior of hydrodynamic model which describes the collective behavior of continuum of agents, driven by pairwise alignment interactions with additional external potential forcing. The external force tends to compete with alignment which makes the large time behavior very different from the original Cucker-Smale (CS) alignment model, and far more interesting. Here we focus on uniformly convex potentials. In the particular case of \emph{quadratic} potentials, we are able to treat a large class of admissible interaction kernels, $\phi(r) \gtrsim (1+r^2)^{-\beta}$ with `thin' tails $\beta \leq 1$ --- thinner than the usual `fat-tail' kernels encountered in CS flocking $\beta\leq\nicefrac{1}{2}$: we discover unconditional flocking with exponential convergence of velocities \emph{and} positions towards a Dirac mass traveling as harmonic oscillator. For general convex potentials, we impose a necessary stability condition, requiring large enough alignment kernel to avoid crowd dispersion. We prove, by hypocoercivity arguments, that both the velocities \emph{and} positions of smooth solution must flock. We also prove the existence of global smooth solutions for one and two space dimensions, subject to critical thresholds in initial configuration space. It is interesting to observe that global smoothness can be guaranteed for sub-critical initial data, independently of the apriori knowledge of large time flocking behavior.

public 01:29:58

Courtney Paquette : Algorithms for stochastic nonconvex and nonsmooth optimization

  -   Applied Math and Analysis ( 123 Views )

Nonsmooth and nonconvex loss functions are often used to model physical phenomena, provide robustness, and improve stability. While convergence guarantees in the smooth, convex settings are well-documented, algorithms for solving large-scale nonsmooth and nonconvex problems remain in their infancy.

I will begin by isolating a class of nonsmooth and nonconvex functions that can be used to model a variety of statistical and signal processing tasks. Standard statistical assumptions on such inverse problems often endow the optimization formulation with an appealing regularity condition: the objective grows sharply away from the solution set. We show that under such regularity, a variety of simple algorithms, subgradient and Gauss Newton like methods, converge rapidly when initialized within constant relative error of the optimal solution. We illustrate the theory and algorithms on the real phase retrieval problem, and survey a number of other applications, including blind deconvolution and covariance matrix estimation.

One of the main advantages of smooth optimization over its nonsmooth counterpart is the potential to use a line search for improved numerical performance. A long-standing open question is to design a line-search procedure in the stochastic setting. In the second part of the talk, I will present a practical line-search method for smooth stochastic optimization that has rigorous convergence guarantees and requires only knowable quantities for implementation. While traditional line-search methods rely on exact computations of the gradient and function values, our method assumes that these values are available up to some dynamically adjusted accuracy that holds with some sufficiently high, but fixed, probability. We show that the expected number of iterations to reach an approximate-stationary point matches the worst-case efficiency of typical first-order methods, while for convex and strongly convex objectives it achieves the rates of deterministic gradient descent.

public 01:24:58

Weijie Su : Taming the Devil of Gradient-based Optimization Methods with the Angel of Differential Equations

  -   Applied Math and Analysis ( 136 Views )

This talk introduces a framework that uses ordinary differential equations to model, analyze, and interpret gradient-based optimization methods. In the first part of the talk, we derive a second-order ODE that is the limit of Nesterov’s accelerated gradient method for non-strongly objectives (NAG-C). The continuous-time ODE is shown to allow for a better understanding of NAG-C and, as a byproduct, we obtain a family of accelerated methods with similar convergence rates. In the second part, we begin by recognizing that existing ODEs in the literature are inadequate to distinguish between two fundamentally different methods, Nesterov’s accelerated gradient method for strongly convex functions (NAG-SC) and Polyak’s heavy-ball method. In response, we derive high-resolution ODEs as more accurate surrogates for the three aforementioned methods. These novel ODEs can be integrated into a general framework that allows for a fine-grained analysis of the discrete optimization algorithms through translating properties of the amenable ODEs into those of their discrete counterparts. As the first application of this framework, we identify the effect of a term referred to as ‘gradient correction’ in NAG-SC but not in the heavy-ball method, shedding insight into why the former achieves acceleration while the latter does not. Moreover, in this high-resolution ODE framework, NAG-C is shown to boost the squared gradient norm minimization at the inverse cubic rate, which is the sharpest known rate concerning NAG-C itself. Finally, by modifying the high-resolution ODE of NAG-C, we obtain a family of new optimization methods that are shown to maintain the accelerated convergence rates as NAG-C for smooth convex functions. This is based on joint work with Stephen Boyd, Emmanuel Candes, Simon Du, Michael Jordan, and Bin Shi.