Quicklists
public 01:34:58

Alex Blumenthal : Chaotic regimes for random dynamical systems

  -   Probability ( 156 Views )

It is anticipated that chaotic regimes (e.g., strange attractors) arise in a wide variety of dynamical systems, including those arising from the study of ensembles of gas particles and fluid mechanics. However, in most cases the problem of rigorously verifying asymptotic chaotic regimes is notoriously difficult. For volume-preserving systems (e.g., incompressible fluid flow or Hamiltonian systems), these issues are exemplified by coexistence phenomena: even in quite simple models which should be chaotic, e.g. the Chirikov standard map, completely opposite dynamical regimes (elliptic islands vs. hyperbolic sets) can be tangled together in phase space in a convoluted way. Recent developments have indicated, however, that verifying chaos is tractable for systems subjected to a small amount of noise— from the perspective of modeling, this is not so unnatural, as the real world is inherently noisy. In this talk, I will discuss two recent results: (1) a large positive Lyapunov exponent for (extremely small) random perturbations of the Chirikov standard map, and (2) a positive Lyapunov exponent for the Lagrangian flow corresponding to various incompressible stochastic fluids models, including stochastic 2D Navier-Stokes and 3D hyperviscous Navier-Stokes on the periodic box. The work in this talk is joint with Jacob Bedrossian, Samuel Punshon-Smith, Jinxin Xue and Lai-Sang Young.

public 01:34:57

Paul Bressloff : Stochastic models of intracellular transport: a PDE perspective

  -   Probability ( 97 Views )

The efficient delivery of proteins and other molecular products to their correct location within a cell (intracellular transport) is of fundamental importance to normal cellular function and development. Moreover, the breakdown of intracellular transport is a major contributing factor to many degenerative diseases. There are two major types of transport. (I) Passive diffusion within the cytosol or the surrounding plasma membrane of the cell. Since the aqueous environment (cytosol) of a cell is highly viscous at the length and velocity scales of macromolecules (low Reynolds number), a diffusing particle can be treated as an overdamped Brownian particle where inertial effects are ignored. (II) Active motor-driven transport along polymerized filaments such as microtubules and F-actin that comprise the cytoskeleton. At appropriate length and time scales, active transport can either be modeled as a velocity-jump process or as an advection-diffusion process. In this talk I present various PDE models of active and passive transport within cells. The bulk of the talk will focus on three examples: synaptic democracy and vesicular transport in axons and dendrites; stochastically gated diffusion in bounded domains; cytoneme-based transport of morphogens during embryogenesis. (A cytoneme is a thin actin-rich filament that forms direct contacts between cells and is thought to provide an alternative to diffusion-based morphogen gradient formation.) Other applications include cellular length control, cell polarization, and synaptogenesis in C. elegans.

public 01:34:49

Martin Hairer : Weak universality of the KPZ equation

  -   Probability ( 107 Views )

public 01:14:36

Ross Pinsky : Transience, Recurrence and the Speed of a Random Walk in a Site-Based Feedback Environment

  -   Probability ( 110 Views )

We study a random walk on the integers Z which evolves in a dynamic environment determined by its own trajectory. Sites flip back and forth between two modes, p and q. R consecutive right jumps from a site in the q-mode are required to switch it to the p-mode, and L consecutive left jumps from a site in the p-mode are required to switch it to the q-mode. From a site in the p-mode the walk jumps right with probability p and left with probability (1-p), while from a site in the q-mode these probabilities are q and (1-q). We prove a sharp cutoff for right/left transience of the random walk in terms of an explicit function of the parameters $\alpha = \alpha(p,q,R,L)$. For $\alpha > 1/2$ the walk is transient to $+\infty$ for any initial environment, whereas for $\alpha < 1/2$ the walk is transient to $-\infty$ for any initial environment. In the critical case, $\alpha = 1/2$, the situation is more complicated and the behavior of the walk depends on the initial environment. We are able to give a characterization of transience/recurrence in many instances, including when either R=1 or L=1 and when R=L=2. In the noncritical case, we also show that the walk has positive speed, and in some situations are able to give an explicit formula for this speed. This is joint work with my former post-doc, Nick Travers, now at Indiana University.