## Stanislav Molchanov : On the random analytic functions

- Probability ( 228 Views )The talk will contain a review of several recent results on the analytic continuation of the random analytic functions. We will start from the classical theorem on the random Taylor series (going to Borel s school), but the main subject will be the random zeta function (which was introduced implicitly by Cramer) and its generalizations. We will show that true primes are not truly random , since zeta functions for the random pseudo-primes (in the spirit of Cramer) have no analytic continuation through the critical line Re (z) = 1/2.

## Lea Popovic : Genealogy of Catalytic Populations

- Probability ( 225 Views )For neutral branching models of two types of populations there are three universality classes of behavior: independent branching, (one-sided) catalytic branching and mutually catalytic branching. Loss of independence in the two latter models generates many new features in the way that the populations evolve. In this talk I will focus on describing the genealogy of a catalytic branching diffusion. This is the many individual fast branching limit of an interacting branching particle model involving two populations, in which one population, the "catalyst", evolves autonomously according to a Galton-Watson process while the other population, the "reactant", evolves according to a branching dynamics that is dependent on the number of catalyst particles. We show that the sequence of suitably rescaled family forests for the catalyst and reactant populations converge in Gromov-Hausdorff topology to limiting real forests. We characterize their distribution via a reflecting diffusion and a collection of point-processes. We compare geometric properties and statistics of the catalytic branching forests with those of the "classical" (independent branching) forest. This is joint work with Andreas Greven and Anita Winter.

## John McSweeney : A Nonuniform Stochastic Coalescent Process with applications to Biology and Computer Science

- Probability ( 222 Views )Viewed forwards in time, a population reproducing according to some random mechanism can be thought of as a branching process. What if it is viewed backwards? We can take a sample of individuals from the current generation and trace their genealogy backwards, and for instance find their most recent common ancestor; this is known as a coalescent process. If we know a population's random mating process, but have no actual data as to what the phylogenetic tree looks like, how do we derive the distribution of the time until its most recent common ancestor? I will discuss a variant on the classical Wright-Fisher reproductive model and deduce some parameter thresholds for emergence of different qualitative features of the tree. An isomorphic problem may also be useful in computer science for bounding the running time of certain random sampling algorithms.

## Ruth Williams : Control of Stochastic Processing Networks

- Probability ( 220 Views )Stochastic processing networks (SPNs) are a significant generalization of conventional queueing networks that allow for flexible scheduling through dynamic sequencing and alternate routing. SPNs arise naturally in a variety of applications in operations management and their control and analysis present challenging mathematical problems. One approach to these problems, via approximate diffusion control problems, has been outlined by J. M. Harrison. Various aspects of this approach have been developed mathematically, including a reduction in dimension of the diffusion control problem. However, other aspects have been less explored, especially, solution of the diffusion control problem, derivation of policies by interpretating such solutions, and limit theorems that establish optimality of such policies in a suitable asymptotic sense. In this talk, for a concrete class of networks called parallel server systems which arise in service network and computer science applications, we explore previously undeveloped aspects of Harrison's scheme and illustrate the use of the approach in obtaining simple control policies that are nearly optimal. Identification of a graphical structure for the network, an invariance principle and properties of local times of reflecting Brownian motion, will feature in our analysis. The talk will conclude with a summary of the current status and description of open problems associated with the further development of control of stochastic processing networks. This talk will draw on aspects of joint work with M. Bramson, M. Reiman, W. Kang and V. Pesic.

## Shankar Bhamidi : Flows, first passage percolation and random disorder in networks

- Probability ( 216 Views )Consider a connected network and suppose each edge in the network has a random positive edge weight. Understanding the structure and weight of the shortest path between nodes in the network is one of the most fundamental problems studied in modern probability theory and goes under the name first passage percolation. It arises as a fundamental building block in many interacting particle system models such as the spread of epidemics on networks. To a large extent such problems have been only studied in the context of the n-dimensional lattice. In the modern context these problems take on an additional significance with the minimal weight measuring the cost of sending information while the number of edges on the optimal path (hopcount) representing the actual time for messages to get between vertices in the network. Given general models of random graphs with random edge costs, can one develop techniques to analyze asymptotics of functionals of interest which are robust to the model formulation? The aim of this talk is to describe a heuristic based on continuous time branching processes which gives very easily, a wide array of asymptotic results for random network models in terms of the Malthusian rate of growth and the stable age distribution of associated branching process. These techniques allow us to solve not only first passage percolation problems rigorously but also understand functionals such as the degree distribution of shortest path trees, congestion across edges as well as asymptotics for betweeness centrality a concept of crucial interest in social networks, in terms of Cox processes and extreme value distributions. These techniques also allow one to exactly solve models of weak disorder in the context of the stochastic mean field model of distance, a model of great interest in probabilistic combinatorial optimization.

## Li-Cheng Tsai : Interacting particle systems with moving boundaries

- Probability ( 215 Views )In this talk I will go over two examples of one-dimensional interacting particle systems: Aldous' up-the-river problem, and a modified Diffusion Limited Growth. I will explain how these systems connect to certain PDE problems with boundaries. For the up-the-river problem this connection helps to solve Aldous conjecture regarding an optimal strategy. For the modified DLA, this connection helps to characterize the scaling exponent and scaling limit of the boundary at the critical density. This talk is based on joint work with Amir Dembo and Wenpin Tang.

## Firas Rassoul-Agha : On the almost-sure invariance principle for random walk in random environment

- Probability ( 208 Views )Consider a crystal formed of two types of atoms placed at the nodes of the integer lattice. The type of each atom is chosen at random, but the crystal is statistically shift-invariant. Consider next an electron hopping from atom to atom. This electron performs a random walk on the integer lattice with randomly chosen transition probabilities (since the configuration seen by the electron is different at each lattice site). This process is highly non-Markovian, due to the interaction between the walk and the environment. We will present a martingale approach to proving the invariance principle (i.e. Gaussian fluctuations from the mean) for (irreversible) Markov chains and show how this can be transferred to a result for the above process (called random walk in random environment). This is joint work with Timo Sepp\"al\"ainen.

## Nicolas Zygouras : Pinning-depinning transition in Random Polymers

- Probability ( 206 Views )Random Polymers are modeled as a one dimensional random walk (S_n), with excursion length distribution P(S_1 = n) = \phi(n)/n^\alpha, \alpha > 1 and \phi(n) a slowly varying function. The polymer gets a random reward whenever it visits or crosses an interface. The random rewards are realised as a sequence of i.i.d. variables (\omega_n). Depending on the relation between the mean value of the disorder \omega_n and the temperature, the polymer might prefer to stick to the interface (pinnings) or undergo a long excursion away from it (depinning). In this talk we will review some aspects of random polymer models. We will also discuss in more detail the pinning-depinning transition of the `Pinning' model and prove its annealed and quenched critical points are distinct. This is joint work with Ken Alexander.

## Ofer Zeitouni : Slowdown in Branching random walks and the inhomogeneous KPP equation

- Probability ( 205 Views )The classical result of Bramson gives a precise logarithmic correction to the speed of front propagation in one dimensional branching random walks and Brownian motions. I will discuss several variants of this model where the slowdown term is not classical.

## Jonathan Mattingly : Noise induced stabilization of dynamical systems

- Probability ( 205 Views )We investigate an example of noise-induced stabilization in the plane that was also considered in (Gawedzki, Herzog, Wehr 2010) and (Birrell,Herzog, Wehr 2011). We show that despite the deterministic system not being globally stable, the addition of additive noise in the vertical direction leads to a unique invariant probability measure to which the system converges at a uniform, exponential rate. These facts are established primarily through the construction of a Lyapunov function which we generate as the solution to a sequence of Poisson equations. Unlike a number of other works, however, our Lyapunov function is constructed in a systematic way, and we present a meta-algorithm we hope will be applicable to other problems. We conclude by proving positivity properties of the transition density by using Malliavin calculus via some unusually explicit calculations. arXiv:1111.175v1 [math.PR]

## Hendrik Weber : Convergence of the two-dimensional dynamic Ising-Kac model

- Probability ( 205 Views )The Ising-Kac model is a variant of the ferromagnetic Ising model in which each spin variable interacts with all spins in a neighbourhood of radius $\ga^{-1}$ for $\ga \ll1$ around its base point. We study the Glauber dynamics for this model on a discrete two-dimensional torus $\Z^2/ (2N+1)\Z^2$, for a system size $N \gg \ga^{-1}$ and for an inverse temperature close to the critical value of the mean field model. We show that the suitably rescaled coarse-grained spin field converges in distribution to the solution of a non-linear stochastic partial differential equation. This equation is the dynamic version of the $\Phi^4_2$ quantum field theory, which is formally given by a reaction diffusion equation driven by an additive space-time white noise. It is well-known that in two spatial dimensions, such equations are distribution valued and a \textit{Wick renormalisation} has to be performed in order to define the non-linear term. Formally, this renormalisation corresponds to adding an infinite mass term to the equation. We show that this need for renormalisation for the limiting equation is reflected in the discrete system by a shift of the critical temperature away from its mean field value. This is a joint work with J.C. Mourrat (Lyon).

## Hao Shen : Stochastic PDEs and regularity structures

- Probability ( 205 Views )In this talk I will review the basic ideas of the regularity structure theory developed by Martin Hairer, as well as its applications to stochastic PDE problems. I will then discuss my joint work with Hairer on the sine-Gordon equation and central limit theorems for stochastic PDEs.

## Krishna Athreya : Coalescence in Galton-Watson trees

- Probability ( 204 Views )Consider a Galton-Watson tree. Pick two individuals at random by simple random sampling from the nth generation and trace heir lines of descent back in time till they meet. Call that generation X_n. In this talk we will discuss the probability distribution of X_n and its limits for the four cases m <1, m=1, m greater than 1 but finite, and m infinite, where m is the mean offspring size.

## Robin PEMANTLE : Zeros of random analytic functions and their derivatives

- Probability ( 204 Views )I will discuss a series of results concerning the effect of the derivative operator on the locations of the zeros of a random analytic function. Two models are considered. In the first, the zeros are chosen IID from some measure on the complex plane. In the second, the zeros are chosen to be a Poisson point process on the real line. Repeated differentiation results in a nearly deterministic zero set.

## Laurie Field : Relating variants of SLE using the Brownian loop measure

- Probability ( 203 Views )In this talk I will discuss a framework for transforming one variant of the SchrammLoewner evolution (SLE) into another. The main tool in this approach is the Brownian loop measure. A simple case is to relate the reversal of radial SLE to whole-plane SLE, which looks the same locally. Writing the formula one might naïvely expect fails, because the loop measure term is infinite. In joint work with Greg Lawler, we show that there is a finite normalized version of the loop measure term, and that with this change, the naïve formula relating the two SLEs becomes correct.

## Anirban Basak : Ferromagnetic Ising Measures on Large Locally Tree-Like Graphs

- Probability ( 202 Views )We consider the ferromagnetic Ising model on a sequence of graphs $G_n$ converging locally weakly to a rooted random tree. Generalizing [Montanari, Mossel, and Sly (2012)], under an appropriate continuity" property, we show that the Ising measures on these graphs converge locally weakly to a measure, which is obtained by first picking a random tree, and then the symmetric mixture of Ising measures with + and - boundary conditions on that tree. Under the extra assumptions that $G_n$ are edge-expanders, we show that the local weak limit of the Ising measures conditioned on positive magnetization, is the Ising measure with + boundary condition on the limiting tree. The continuity" property holds except possibly for countably many choices of $\beta$, which for limiting trees of minimum degree at least three, are all within certain explicitly specified compact interval. We further show the edge-expander property for (most of) the configuration model graphs corresponding to limiting (multi-type) Galton Watson trees. This talk is based on a joint work with Amir Dembo.

## Scott Schmidler : Mixing times for non-stationary processes

- Probability ( 202 Views )Markov chain methods for Monte Carlo simulation of complex physical or statistical models often require significant tuning. Recent theoretical progress has renewed interest in "adaptive" Markov chain algorithms which learn from their sample history. However, these algorithms produce non-Markovian, time-inhomogeneous, irreversible stochastic processes, making rigorous analysis challenging. We show that lower bounds on the mixing times of these processes can be obtained using familiar ideas of hitting times and conductance from the theory of reversible Markov chains. The bounds obtained are sufficient to demonstrate slow mixing of several recently proposed algorithms including adaptive Metropolis kernels and the equi-energy sampler on some multimodal target distributions. These results provide the first non-trivial bounds on the mixing times of adaptive MCMC samplers, and suggest a way of classifying adaptive schemes that leads to new hybrid algorithms. Many open problems remain.

## David Sivakoff : Nucleation scaling in jigsaw percolation

- Probability ( 201 Views )Jigsaw percolation is a nonlocal process that iteratively merges elements of a partition of the vertices in a deterministic puzzle graph according to the connectivity properties of a random collaboration graph. We assume the collaboration graph is an Erdos-Renyi graph with edge probability p, and investigate the probability that the puzzle graph is solved, that is, that the process eventually produces the partition {V}. In some generality, for puzzle graphs with N vertices of degrees about D, this probability is close to 1 or 0 depending on whether pD(log N) is large or small. We give more detailed results for the one dimensional cycle and two dimensional torus puzzle graphs, where in many instances we can prove sharp phase transitions.

## F. Baudoin : Functional Inequalities: Probability and geometry in interaction

- Probability ( 200 Views )The talk will be an introduction to the world of functional inequalities with a geometric content. I will in particular focus on the family of log-Sobolev and Sobolev inequalities and show how these inequalities are closely connected to the geometry of the ambient space. I will mainly follow the Bakry-Ledoux approach to these inequalities which is is based on the notion of intrinsic curvature of a diffusion operator and at the end of the presentation will explain how these ideas have recently been used in sub-Riemannian geometry.

## Rick Durrett : Voter Model Perturbations

- Probability ( 199 Views )We consider particle systems that are perturbations of the voter model and show that when space and time are rescaled the system converges to a solution of a reaction diffusion equation in dimensions $d \ge 3$. Combining this result with properties of the PDE and a block construction, we give general, and often asymptotically sharp, conditions for the existence of non-trivial stationary distributions, and for extinction of one type. As applications, we describe the phase diagrams of three systems when the parameters are close to the voter model: (i) a stochastic spatial Lotka-Volterra model of Neuhauser and Pacala, (ii) a model of the evolution of cooperation of Ohtsuki, Hauert, Lieberman, and Nowak, and (iii) a continuous time version of the non-linear voter model of Molofsky, Durrett, Dushoff, Griffeath, and Levin. The first two applications confirm conjectures of Cox and Perkins and Ohtsuki et al.

## Brian Rider : Log-gases and Tracy-Widom laws

- Probability ( 199 Views )The now ubiquitous Tracy-Widom laws were first discovered in the context of the Gaussian Orthogonal, Unitary, and Symplectic Ensembles (G{O/U/S}E) of random matrix theory. The latter may be viewed as logarithmic gases with quadratic (Gaussian) potential at three special inverses temperatures (beta=1,2,4). A few years back, Jose Ramirez, Balint Virag, and I showed that that one obtains generalizations of the Tracy-Widom laws at all inverse temperatures (beta>0), though still for quadratic potentials. I'll explain how similar ideas (and considerably more labor) extends the result to general potential, general temperature log-gases. This is joint work with Manjunath Krishnapur and Balint Virag.

## Antonio Auffinger : The Parisi Formula: duality and equivalence of ensembles.

- Probability ( 195 Views )In 1979, G. Parisi predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington-Kirkpatrick model and described the role played by its minimizer, called the Parisi measure. This remarkable formula was proven by Talagrand in 2006. In this talk I will explain a new representation of the Parisi functional that finally connects the temperature parameter and the Parisi measure as dual parameters. Based on joint-works with Wei-Kuo Chen.

## Elizabeth Meckes : Projections of probability distributions: a measure-theoretic Dvoretzky theorem

- Probability ( 192 Views )Dvoretzky's theorem tells us that if we put an arbitrary norm on n-dimensional Euclidean space, no matter what that normed space is like, if we pass to subspaces of dimension about log(n), the space looks pretty much Euclidean. A related measure-theoretic phenomenon has long been observed: the (one-dimensional) marginals of many natural high-dimensional probability distributions look about Gaussian. A question which had received little attention until recently is whether this phenomenon persists for k-dimensional marginals for k growing with n, and if so, for how large a k? In this talk I will discuss recent work showing that the phenomenon does indeed persist if k less than 2log(n)/log(log(n)), and that this bound is sharp (even the 2!).

## David Andeerson : Stochastic models of biochemical reaction systems

- Probability ( 181 Views )I will present a tutorial on the mathematical models utilized in molecular biology. I will begin with an introduction to the usual stochastic and deterministic models, and then introduce terminology and results from chemical reaction network theory. I will end by presenting the deficiency zero theorem in both the deterministic and stochastic settings.

## Maria Gordina : Gaussian type analysis on infinite-dimensional Heisenberg groups

- Probability ( 181 Views )This is a joint work with B.Driver. The groups in question are modeled on an abstract Wiener space. Then a group Brownian motion is defined, and its properties are studied in connection with the geometry of this group. The main results include quasi-invariance of the heat kernel measure, log Sobolev inequality (following a bound on the Ricci curvature), and the Taylor isomorphism to the corresponding Fock space. The latter is a version of the Ito-Wiener expansion in the non-commutative setting.

## Yu Gu : Scaling limits of random fluctuations in homogenization of divergence form operators

- Probability ( 179 Views )Recently, quantitative stochastic homogenization of operators in divergence form has witnessed important progress. Our goal is to go beyond the error bound to analyze statistical fluctuations around the homogenized limit. We prove a pointwise two-scale expansion and a large scale central limit theorem for the solution. The approach is probabilistic. The main ingredients include the Kipnis-Varadhan method applied to symmetric diffusion in random environment, a quantitative martingale central limit theorem, the Helffer-Sjostrand covariance representation and Stein's method. This is joint work with Jean-Christophe Mourrat.

## Sayan Mukherjee : Random walks on simplicial complexes

- Probability ( 176 Views )The graph Laplacian has been of interest in statistics, machine learning, and theoretical computer science in areas from manifold learning to analysis of Markov chains. A common uses of the graph Laplacian has been in spectral clustering and dimension reduction. A theoretical motivation for why spectral clustering works is the Cheeger inequality which relates the eigenvalues of the graph Laplacian to how disconnected the graph is, Betti zero for topology. We ask how the Cheeger inequality extends to higher-order Laplacians, operators on simplicial complexes, and what clustering means for these higher-order operators. This is joint work with John Steenbergen Related to the graph Laplacian is the idea of random walks on graphs. We will define a random walk on simplicial complexes with a stationary distribution that is related to the k-dimensional Laplacian. The stationary distribution reveals (co)homology of the geometry of the random walk. We apply this random walk to the problem of semi-supervised learning, given some labeled observations and many unlabeled observations how does one propagate the labels.

## Amarjit Budhiraja : Large Deviations for Small Noise Infinite Dimensional Stochastic Dynamical Systems

- Probability ( 168 Views )The large deviations analysis of solutions to stochastic differential equations and related processes is often based on approximation. The construction and justification of the approximations can be onerous, especially in the case where the process state is infinite dimensional. In this work we show how such approximations can be avoided for a variety of infinite dimensional models driven by some form of Brownian noise. The approach is based on a variational representation for functionals of Brownian motion. Proofs of large deviations properties are reduced to demonstrating basic qualitative properties (existence, uniqueness, and tightness) of certain perturbations of the original process. This is a joint work with P.Dupuis and V.Maroulas.

## Leonid Koralov : An Inverse Problem for Gibbs Fields

- Probability ( 167 Views )It is well known that for a regular stable potential of pair interaction and a small value of activity one can define the corresponding Gibbs field (a measure on the space of configurations of points in $\mathbb{Z}^d$ or $\mathbb{R}^d$). We consider a converse problem. Namely, we show that for a sufficiently small constant $\overline{\rho}_1$ and a sufficiently small function $\overline{\rho}_2(x)$, $x \in \mathbb{Z}^d$ or $\mathbb{R}^d$, there exist a hard core pair potential, and a value of activity, such that $\overline{\rho}_1$ is the density and $\overline{\rho}_2$ is the pair correlation function of the corresponding Gibbs field.