Lisa Hartung : Extreme Level Sets of Branching Brownian Motion
- Probability ( 253 Views )Branching Brownian motion is a classical process in probability theory belonging to the class of Log-correlated random fields. We study the structure of extreme level sets of this process, namely the sets of particles whose height is within a fixed distance from the order of the global maximum. It is well known that such particles congregate at large times in clusters of order-one genealogical diameter around local maxima which form a Cox process in the limit. We add to these results by finding the asymptotic size of extreme level sets and the typical height and shape of those clusters which carry such level sets. We also find the right tail decay of the distribution of the distance between the two highest particles. These results confirm two conjectures of Brunet and Derrida.(joint work with A. Cortines, O Louidor)
David Sivakoff : Polluted Bootstrap Percolation in Three Dimensions
- Probability ( 231 Views )In r-neighbor bootstrap percolation, the vertices of Z^d are initially occupied independently with probability p and empty otherwise. Occupied vertices remain occupied forever, and empty vertices iteratively become occupied when they have at least r occupied neighbors. It is a classic result of van Enter (r=d=2) and Schonmann (d>2 and r between 2 and d) that every vertex in Z^d eventually becomes occupied for any initial density p>0. In the polluted bootstrap percolation model, vertices of Z^d are initially closed with probability q, occupied with probability p and empty otherwise. The r-neighbor bootstrap rule is the same, but now closed vertices act as obstacles, and remain closed forever. This model was introduced 20 years ago by Gravner and McDonald, who studied the case d=r=2 and proved a phase transition exists for this model as p and q tend to 0. We prove a similar phase transition occurs when d=r=3, and we identify the polynomial scaling between p and q at which this transition occurs for the modified bootstrap percolation model. For one direction, our proof relies on duality methods in Lipschitz percolation to find a blocking structure that prevents occupation of the origin. The other direction follows from a rescaling argument, and the recent results of Holroyd and Gravner for d>r=2. This is joint work with Holroyd and Gravner.
Li-Cheng Tsai : Interacting particle systems with moving boundaries
- Probability ( 218 Views )In this talk I will go over two examples of one-dimensional interacting particle systems: Aldous' up-the-river problem, and a modified Diffusion Limited Growth. I will explain how these systems connect to certain PDE problems with boundaries. For the up-the-river problem this connection helps to solve Aldous conjecture regarding an optimal strategy. For the modified DLA, this connection helps to characterize the scaling exponent and scaling limit of the boundary at the critical density. This talk is based on joint work with Amir Dembo and Wenpin Tang.
Rick Durrett : Voter Model Perturbations
- Probability ( 202 Views )We consider particle systems that are perturbations of the voter model and show that when space and time are rescaled the system converges to a solution of a reaction diffusion equation in dimensions $d \ge 3$. Combining this result with properties of the PDE and a block construction, we give general, and often asymptotically sharp, conditions for the existence of non-trivial stationary distributions, and for extinction of one type. As applications, we describe the phase diagrams of three systems when the parameters are close to the voter model: (i) a stochastic spatial Lotka-Volterra model of Neuhauser and Pacala, (ii) a model of the evolution of cooperation of Ohtsuki, Hauert, Lieberman, and Nowak, and (iii) a continuous time version of the non-linear voter model of Molofsky, Durrett, Dushoff, Griffeath, and Levin. The first two applications confirm conjectures of Cox and Perkins and Ohtsuki et al.
Brian Rider : Log-gases and Tracy-Widom laws
- Probability ( 201 Views )The now ubiquitous Tracy-Widom laws were first discovered in the context of the Gaussian Orthogonal, Unitary, and Symplectic Ensembles (G{O/U/S}E) of random matrix theory. The latter may be viewed as logarithmic gases with quadratic (Gaussian) potential at three special inverses temperatures (beta=1,2,4). A few years back, Jose Ramirez, Balint Virag, and I showed that that one obtains generalizations of the Tracy-Widom laws at all inverse temperatures (beta>0), though still for quadratic potentials. I'll explain how similar ideas (and considerably more labor) extends the result to general potential, general temperature log-gases. This is joint work with Manjunath Krishnapur and Balint Virag.
David Andeerson : Stochastic models of biochemical reaction systems
- Probability ( 182 Views )I will present a tutorial on the mathematical models utilized in molecular biology. I will begin with an introduction to the usual stochastic and deterministic models, and then introduce terminology and results from chemical reaction network theory. I will end by presenting the deficiency zero theorem in both the deterministic and stochastic settings.
Amarjit Budhiraja : Large Deviations for Small Noise Infinite Dimensional Stochastic Dynamical Systems
- Probability ( 171 Views )The large deviations analysis of solutions to stochastic differential equations and related processes is often based on approximation. The construction and justification of the approximations can be onerous, especially in the case where the process state is infinite dimensional. In this work we show how such approximations can be avoided for a variety of infinite dimensional models driven by some form of Brownian noise. The approach is based on a variational representation for functionals of Brownian motion. Proofs of large deviations properties are reduced to demonstrating basic qualitative properties (existence, uniqueness, and tightness) of certain perturbations of the original process. This is a joint work with P.Dupuis and V.Maroulas.
David Herzog : Hypocoercivity for Langevin dynamics
- Probability ( 168 Views )This will be the last in his sequence of an introductory lecture on Hypocoercivity for Langevin dynamics. For those who have not attended the previous lectures and are familiar with Langevin dynamics, the talk should be accessible. We will continue our discussion on convergence to equilibrium for second-order Langevin dynamics using the Poincare approach. We'll recap convergence in H^1(\mu) and then we'll talk about the direct L^2(\mu) method of Dolbeault, Mouhot, and Schmeiser, also called the DMS approach.
Mohammad Ghomi : Topology of Locally convex hypersurfaces with prescribed boundary
- Probability ( 167 Views )An open problem in Classical Differential Geometry, posed by S. T. Yau, asks when does a simple closed curve in Euclidean 3-space bound a surface of positive curvature? We will give a survey of recent results related to this problem, including connections with the h-principle, Monge-Ampere equations, and Alexandrov spaces with curvature bounded below. In particular we will discuss joint work with Stephanie Alexander and Jeremy Wong on Topological finiteness theorems for nonnegatively curved surfaces filling a prescribed boundary, which use in part the finiteness and stability theorems of Gromov and Perelman.
James Johndrow : Error Bounds for Approximations of Markov Chains
- Probability ( 140 Views )We give results on the properties of Markov kernels that approximate another Markov kernel. The basic idea is that when the original kernel satisfies a contraction condition in some metric, the long-time dynamics of the two chains -- as well as the invariant measures, when they exist -- will be close in that metric, so long as the approximating kernel satisfies a suitable approximation error condition. We focus on weighted total variation and Wasserstein metrics, and motivate the results with applications to scalable Markov chain Monte Carlo algorithms. This is joint work with Jonathan Mattingly.
Joe Jackson : The convergence problem in mean field control
- Probability ( 123 Views )This talk will be about the convergence problem in mean field control (MFC), i.e. the challenge of rigorously justifying the convergence of certain "symmetric" $N$-particle stochastic control problems towards their mean field counterparts. On the one hand, this convergence problem is already well-understood from a qualitative perspective, thanks to powerful probabilistic techniques based on compactness. On the other hand, quantitative results (i.e. rates of convergence) are more difficult to obtain, in large part because the value function of the mean field problem (which is also the solution to a certain Hamilton-Jacobi equation on the Wasserstein space) may fail to be $C^1$, even if all the data is smooth. After giving an overview of the convergence problem, I will discuss the results of two recent joint works with Cardaliaguet, Daudin, Delarue, and Souganidis, in which we use some ideas from the theory of viscosity solutions to overcome this lack of regularity and obtain rates of convergence of the $N$-particle value functions towards the value function of the corresponding MFC problem.
Peter Bubenik : Multivariate topological data analysis
- Probability ( 120 Views )I will present results on constructing an estimator of a function on a compact manifold for the purpose of recovering its "topology". What this means will be explained in detail. The talk will conclude with an application to brain imaging.
Daniel Jerison : Random walks on sandpile groups
- Probability ( 115 Views )The sandpile group of a finite graph is an abelian group that is defined using the graph Laplacian. I will describe a natural random walk on this group. The main questions are: what is the mixing time of the sandpile random walk, and how is it affected by the geometry of the underlying graph? These questions can sometimes be answered even if the actual group is unknown. I will present an explicit characterization of the eigenvalues and eigenfunctions of the sandpile walk, and demonstrate an inverse relationship between the spectral gaps of the sandpile walk and the simple random walk on the underlying graph. This is joint work with Lionel Levine and John Pike.
Soumik Pal : Markov chains on partitions and their diffusion analogs
- Probability ( 113 Views )A popular family of models of random partitions is called the Chinese Restaurant Process. We imagine n customers being seated randomly and sequentially at tables of a restaurant according to a fixed stochastic rule. Grouping customers by the tables gives us a partition of n. Consider a Markov chain on such partitions where we remove a randomly chosen customer and reseat her. How can one describe the limit of such a Markov chain as n tends to infinity? We will construct such limits as diffusions on partitions of the unit interval. Examples of such random partitions of the unit interval are given by the complement of the zeros of the Brownian motion or the Brownian bridge. The processes of ranked interval lengths of our partitions are members of a family of diffusions introduced by Ethier and Kurtz (1981) and Petrov (2009) that are stationary with respect to the Poisson-Dirichlet distributions. Our construction is a piece of a more complex diffusion on the space of real trees, stationary with respect to the law of the Brownian Continuum Random Tree, whose existence has been conjectured by David Aldous. Joint work with Noah Forman, Doug Rizzolo, and Matthias Winkel.
Amarjit Budhiraja : Invariant measures of the infinite Atlas model: domains of attraction, extremality, and equilibrium fluctuations.
- Probability ( 113 Views )The infinite Atlas model describes a countable system of competing Brownian particles where the lowest particle gets a unit upward drift and the rest evolve as standard Brownian motions. The stochastic process of gaps between the particles in the infinite Atlas model has a one parameter family {p(a), a > 0} of product form mutually singular stationary distributions. We say that an initial distribution of gaps is in the weak domain of attraction of the stationary measure p(a) if the time averaged laws of the stochastic process of the gaps, when initialized using that distribution, converge to p(a) weakly in the large time limit. We provide general sufficient conditions on the initial gap distribution of the Atlas particles for it to lie in the weak domain of attraction of p(a) for each a. Results on extremality and ergodicity of p(a) will be presented. Finally, I will describe some recent results on fluctuations of the Atlas model from inhomogeneous stationary profiles. This is based on joint work with Sayan Banerjee and Peter Rudzis.
Jian Ding : Random planar metrics of Gaussian free fields
- Probability ( 112 Views )I will present a few recent results on random planar metrics of two-dimensional discrete Gaussian free fields, including Liouville first passage percolation, the chemical distance for level-set percolation and the electric effective resistance on an associated random network. Besides depicting a fascinating picture for 2D GFF, these metric aspects are closely related to various models of planar random walks.
Rene Carmona : Mean Field Games: theory and applications
- Probability ( 112 Views )We review the Mean Field Game (MFG) paradigm introduced independently by Caines-Huang-Malhame and Lasry Lyons ten years ago, and we illustrate the relevance for applications with a couple of examples (bird flocking and room exit). We then review the probabilistic approach based on Forward-Backward Stochastic Differential Equations (FBSDEs), and we derive the Master Equation from a version of the chain rule (Ito's formula) for functions over flows of probability measures. Finally, we give a new form to the extension of MFGs to the case of major and minor players and, at least in the finite state space case, we describe an application to virus contagion (e.g. cyber security).
Andrea Agazzi : Large Deviations Theory for Chemical Reaction Networks
- Probability ( 111 Views )The dynamics of a set of chemical reactions are usually modeled by mass action kinetics as a set of algebraic ordinary differential equations. This model sees the state space of the system as a continuum, whereas chemical reactions represent interactions of a discrete set of molecules. We study large fluctuations of the stochastic mass action kinetics model through Freidlin-Wentzell theory. The application of such a theory to this framework requires justification, in particular because of the non-uniformily Lipschitz character of the model. We therefore find, using tools of Lyapunov stability theory, a set of sufficient conditions for the applicability of large deviations theory to this framework, and prove that such conditions are satisfied by a large class of chemical reaction networks identified exclusively on the base of their topological structure.
George Tauchen : The Realized Laplace Transform of Volatility
- Probability ( 110 Views )We introduce a new measure constructed from high-frequency financial data which we call the Realized Laplace Transform of volatility. The statistic provides a nonparametric estimate for the empirical Laplace transform of the latent stochastic volatility process over a given interval of time. When a long span of data is used, i.e., under joint long-span and fill-in asymptotics, it is an estimate of the volatility Laplace transform. The asymptotic behavior of the statistic depends on the small scale behavior of the driving martingale. We derive the asymptotics both in the case when the latter is known and when it needs to be inferred from the data. When the underlying process is a jump-diffusion our statistic is robust to jumps and when the process is pure-jump it is robust to presence of less active jumps. We apply our results to simulated and real financial data.
Paul Bressloff : Stochastic models of intracellular transport: a PDE perspective
- Probability ( 108 Views )The efficient delivery of proteins and other molecular products to their correct location within a cell (intracellular transport) is of fundamental importance to normal cellular function and development. Moreover, the breakdown of intracellular transport is a major contributing factor to many degenerative diseases. There are two major types of transport. (I) Passive diffusion within the cytosol or the surrounding plasma membrane of the cell. Since the aqueous environment (cytosol) of a cell is highly viscous at the length and velocity scales of macromolecules (low Reynolds number), a diffusing particle can be treated as an overdamped Brownian particle where inertial effects are ignored. (II) Active motor-driven transport along polymerized filaments such as microtubules and F-actin that comprise the cytoskeleton. At appropriate length and time scales, active transport can either be modeled as a velocity-jump process or as an advection-diffusion process. In this talk I present various PDE models of active and passive transport within cells. The bulk of the talk will focus on three examples: synaptic democracy and vesicular transport in axons and dendrites; stochastically gated diffusion in bounded domains; cytoneme-based transport of morphogens during embryogenesis. (A cytoneme is a thin actin-rich filament that forms direct contacts between cells and is thought to provide an alternative to diffusion-based morphogen gradient formation.) Other applications include cellular length control, cell polarization, and synaptogenesis in C. elegans.
Paul Tupper : A Framework for Modelling and Simulating Systems Satisfying Detailed Balance
- Probability ( 108 Views )We propose a framework for modelling stochastic systems which satisfy detailed balance (or in other terminology, time-reversibility). Rather than specifying the dynamics through a state-dependent drift and diffusion coefficients, we specify an equilibrium probability density and a state-dependent diffusion coefficient. We argue that our framework is more natural from the modelling point of view and has a distinct advantage in situations where either the equilibrium probability density or the diffusion coefficient is discontinuous. We introduce a numerical method for simulating dynamics in our framework that samples from the equilibrium probability density exactly and elegantly handles discontinuities in the coefficients. This is joint work with Xin Yang.
Jonathan Weare : Stratification of Markov processes for rare event simulation
- Probability ( 108 Views )I will discuss an ensemble sampling scheme based on a decomposition of the target average of interest into subproblems that are each individually easier to solve and can be solved in parallel. The most basic version of the scheme computes averages with respect to a given density and is a generalization of the Umbrella Sampling method for the calculation of free energies. For equilibrium versions of the scheme we have developed error bounds that reveal that the existing understanding of umbrella sampling is incomplete and potentially misleading. We demonstrate that the improvement from umbrella sampling over direct simulation can be dramatic in certain regimes. Our bounds are motivated by new perturbation bounds for Markov Chains that we recently established and that are substantially more detailed than existing perturbation bounds for Markov chains. I will also briefly outline a ``trajectory stratification technique that extends the basic umbrella sampling philosophy to the calculation of dynamic averages with respect a given Markov process. The scheme is capable of computing very general dynamic averages and offers a natural way to parallelize in both time and space.
Jake Madrid : Stochastic Extinction events in Large Populations Prior to Entering the Metastable State
- Probability ( 102 Views )We will explore the role of demographic stochasticity in triggering extinction events in models of large finite populations. While prior works have focused on large fluctuations from quasi-stationary distributions, we instead consider extinction events occurring before entering a metastable state. Since such extinction events require only slight deviations from the mean-field trajectories, we can derive the approximating extinction probability PDE with a modified Robin-type boundary condition. We then investigate the utility of this approximation by comparing to the Lotka-Volterra model as well as the Lotka-Volterra model with logistic growth.
Jimmy He : Shift invariance of half space integrable models
- Probability ( 100 Views )I'll discuss work on shift invariance in a half space setting. These are non-trivial symmetries allowing certain observables of integrable models with a boundary to be shifted while preserving their joint distribution. The starting point is the colored stochastic six vertex model in a half space, from which we obtain results on the asymmetric simple exclusion process, as well as for the beta polymer through a fusion procedure, both in a half space setting. An application to the asymptotics of a half space analogue of the oriented swap process is also given.
Mariana Olvera-Cravioto : Opinion dynamics on complex networks: From mean-field limits to sparse approximations
- Probability ( 98 Views )In a world of polarized opinions on many cultural issues, we propose a model for the evolution of opinions on a large complex network. Our model is akin to the popular Friedkin-Johnsen model, with the added complexity of vertex-dependent media signals and confirmation bias, both of which help explain some of the most important factors leading to polarization. The analysis of the model is done on a directed random graph, capable of replicating highly inhomogeneous real-world networks with various degrees of assortativity and community structure. Our main results give the stationary distribution of opinions on the network, including explicitly computable formulas for the conditional means and variances for the various communities. Our results span the entire range of inhomogeneous random graphs, from the sparse regime, where the expected degrees are bounded, all the way to the dense regime, where a graph having n vertices has order n^2 edges.
Corrine Yap : Reconstructing Random Pictures
- Probability ( 97 Views )Reconstruction problems ask whether or not it is possible to uniquely build a discrete structure from the collection of its substructures of a fixed size. This question has been explored in a wide range of settings, most famously with graphs and the resulting Graph Reconstruction Conjecture due to Kelly and Ulam, but also including geometric sets, jigsaws, and abelian groups. In this talk, we'll consider the reconstruction of random pictures (n-by-n grids with binary entries) from the collection of its k-by-k subgrids and prove a nearly-sharp threshold for k = k(n). Our main proof technique is an adaptation of the Peierls contour method from statistical physics. Joint work with Bhargav Narayanan.
Leonid Petrov : Lax equations for integrable stochastic particle systems
- Probability ( 93 Views )Integrable stochastic particle systems in one space dimension, like the Totally Asymmetric Simple Exclusion Process (TASEP), have been studied for over 50 years (introduced simultaneously in biology and mathematics in 1969-70). They strike a balance between being simple enough to be mathematically tractable and complicated enough to describe many interesting phenomena. Many natural questions about these systems can be generalized by introducing multiple parameters. The interplay between these parameters is powered by the Yang-Baxter equation, which brings new intriguing results to the well-traveled territory. In particular, I will discuss new Lax-type equations for the Markov semigroups of the TASEP and its relatives. Based on a joint work with Axel Saenz.
Erik Bates : The Busemann process of (1+1)-dimensional directed polymers
- Probability ( 78 Views )Directed polymers are a statistical mechanics model for random growth. Their partition functions are solutions to a discrete stochastic heat equation. This talk will discuss the logarithmic derivatives of the partition functions, which are solutions to a discrete stochastic Burgers equation. Of interest is the success or failure of the “one force-one solution principle” for this equation. I will reframe this question in the language of polymers, and share some surprising results that follow. Based on joint work with Louis Fan and Timo Seppäläinen.
Haotian Gu : Universality and Phase Transitions of Holomorphic Multiplicative Chaos
- Probability ( 65 Views )The random distribution Holomorphic multiplicative chaos (HMC) with Gaussian inputs is recently introduced independently by Najnudel, Paquette, and Simm as a limiting object on the unit complex circle of characteristic polynomial of circular beta ensembles, and by Soundararajan and Zaman as an analogue of random multiplicative functions. In this talk, we will explore this rich connection between HMC and random matrix theory, number theory, and Gaussian multiplicative chaos. We will also discuss the regularity of this distribution, alongside the fractional moments and tightness of its Fourier coefficients (also referred to as secular coefficients). Furthermore, we introduce non-Gaussian HMC, and discuss the Gaussian universality and two phase transitions phenomenon in the fractional moments of its secular coefficients. A transition from global to local effect is observed, alongside an analysis of the critical local-global case. As a result, we unveil the regularity of some non-Gaussian HMC and tightness of their secular coefficients. Based on joint work with Zhenyuan Zhang.