Zoe Huang : Motion by mean curvature in interacting particle systems
- Probability,Uploaded Videos ( 1254 Views )There are a number of situations in which rescaled interacting particle systems have been shown to converge to a reaction diffusion equation (RDE) with a bistable reaction term. These RDEs have traveling wave solutions. When the speed of the wave is nonzero, block constructions have been used to prove the existence or nonexistence of nontrivial stationary distributions. Here, we follow the approach in a paper by Etheridge, Freeman, and Pennington to show that in a wide variety of examples when the RDE limit has a bistable reaction term and traveling waves have speed 0, one can run time faster and further rescale space to obtain convergence to motion by mean curvature. This opens up the possibility of proving that the sexual reproduction model with fast stirring has a discontinuous phase transition, and that in Region 2 of the phase diagram for the nonlinear voter model studied by Molofsky et al there were two nontrivial stationary distributions.
Sayan Banerjee : Singular Reflected Diffusions
- Probability ( 384 Views )I will talk about some models coming from Physics and Queueing Theory that give rise to singular reflected processes in their diffusion limit. Such diffusions are characterized by non-elliptic generators (which are not even hypoelliptic) in the interior, and ergodicity arises from non-trivial interactions between the diffusion, drift and reflection. I will introduce a regenerative process approach which identifies renewal times in diffusion paths and analyzes excursions between successive renewal times. This provides a detailed description of the stationary distribution even when closed form expressions are unavailable. Based on joint works with Chris Burdzy, Brendan Brown, Mauricio Duarte and Debankur Mukherjee.
Nayantara Bhatnagar : Subsequence Statistics in Random Mallows Permutations
- Probability ( 258 Views )The longest increasing subsequence (LIS) of a uniformly random permutation is a well studied problem. Vershik-Kerov and Logan-Shepp first showed that asymptotically the typical length of the LIS is 2sqrt(n). This line of research culminated in the work of Baik-Deift-Johansson who related this length to the GUE Tracy-Widom distribution. We study the length of the LIS of random permutations drawn from the Mallows measure, introduced by Mallows in connection with ranking problems in statistics. We prove limit theorems for the LIS for different regimes of the parameter of the distribution. I will also describe some recent results on the longest common subsequence of independent Mallows permutations. Relevant background for the talk will be introduced as needed. Based on work with Ron Peled, Riddhi Basu and Ke Jin.
Didong Li : Learning & Exploiting Low-Dimensional Structure in High-Dimensional Data
- Probability ( 240 Views )Data lying in a high dimensional ambient space are commonly thought to have a much lower intrinsic dimension. In particular, the data may be concentrated near a lower-dimensional subspace or manifold. There is an immense literature focused on approximating the unknown subspace and the unknown density, and exploiting such approximations in clustering, data compression, and building of predictive models. Most of the literature relies on approximating subspaces and densities using a locally linear, and potentially multiscale, dictionary with Gaussian kernels. In this talk, we propose a simple and general alternative, which instead uses pieces of spheres, or spherelets, to locally approximate the unknown subspace. I will also introduce a curved kernel called the Fisherâ??Gaussian (FG) kernel which outperforms multivariate Gaussians in many cases. Theory is developed showing that spherelets can produce lower covering numbers and mean square errors for many manifolds, as well as the posterior consistency of the Dirichlet process mixture of the FG kernels. Time permitting, I will also talk about an ongoing project about stochastic differential geometry.
David Sivakoff : Polluted Bootstrap Percolation in Three Dimensions
- Probability ( 231 Views )In r-neighbor bootstrap percolation, the vertices of Z^d are initially occupied independently with probability p and empty otherwise. Occupied vertices remain occupied forever, and empty vertices iteratively become occupied when they have at least r occupied neighbors. It is a classic result of van Enter (r=d=2) and Schonmann (d>2 and r between 2 and d) that every vertex in Z^d eventually becomes occupied for any initial density p>0. In the polluted bootstrap percolation model, vertices of Z^d are initially closed with probability q, occupied with probability p and empty otherwise. The r-neighbor bootstrap rule is the same, but now closed vertices act as obstacles, and remain closed forever. This model was introduced 20 years ago by Gravner and McDonald, who studied the case d=r=2 and proved a phase transition exists for this model as p and q tend to 0. We prove a similar phase transition occurs when d=r=3, and we identify the polynomial scaling between p and q at which this transition occurs for the modified bootstrap percolation model. For one direction, our proof relies on duality methods in Lipschitz percolation to find a blocking structure that prevents occupation of the origin. The other direction follows from a rescaling argument, and the recent results of Holroyd and Gravner for d>r=2. This is joint work with Holroyd and Gravner.
Lea Popovic : Genealogy of Catalytic Populations
- Probability ( 230 Views )For neutral branching models of two types of populations there are three universality classes of behavior: independent branching, (one-sided) catalytic branching and mutually catalytic branching. Loss of independence in the two latter models generates many new features in the way that the populations evolve. In this talk I will focus on describing the genealogy of a catalytic branching diffusion. This is the many individual fast branching limit of an interacting branching particle model involving two populations, in which one population, the "catalyst", evolves autonomously according to a Galton-Watson process while the other population, the "reactant", evolves according to a branching dynamics that is dependent on the number of catalyst particles. We show that the sequence of suitably rescaled family forests for the catalyst and reactant populations converge in Gromov-Hausdorff topology to limiting real forests. We characterize their distribution via a reflecting diffusion and a collection of point-processes. We compare geometric properties and statistics of the catalytic branching forests with those of the "classical" (independent branching) forest. This is joint work with Andreas Greven and Anita Winter.
John McSweeney : A Nonuniform Stochastic Coalescent Process with applications to Biology and Computer Science
- Probability ( 225 Views )Viewed forwards in time, a population reproducing according to some random mechanism can be thought of as a branching process. What if it is viewed backwards? We can take a sample of individuals from the current generation and trace their genealogy backwards, and for instance find their most recent common ancestor; this is known as a coalescent process. If we know a population's random mating process, but have no actual data as to what the phylogenetic tree looks like, how do we derive the distribution of the time until its most recent common ancestor? I will discuss a variant on the classical Wright-Fisher reproductive model and deduce some parameter thresholds for emergence of different qualitative features of the tree. An isomorphic problem may also be useful in computer science for bounding the running time of certain random sampling algorithms.
Li-Cheng Tsai : Interacting particle systems with moving boundaries
- Probability ( 218 Views )In this talk I will go over two examples of one-dimensional interacting particle systems: Aldous' up-the-river problem, and a modified Diffusion Limited Growth. I will explain how these systems connect to certain PDE problems with boundaries. For the up-the-river problem this connection helps to solve AldousÂ? conjecture regarding an optimal strategy. For the modified DLA, this connection helps to characterize the scaling exponent and scaling limit of the boundary at the critical density. This talk is based on joint work with Amir Dembo and Wenpin Tang.
Jonathan Mattingly : Noise induced stabilization of dynamical systems
- Probability ( 208 Views )We investigate an example of noise-induced stabilization in the plane that was also considered in (Gawedzki, Herzog, Wehr 2010) and (Birrell,Herzog, Wehr 2011). We show that despite the deterministic system not being globally stable, the addition of additive noise in the vertical direction leads to a unique invariant probability measure to which the system converges at a uniform, exponential rate. These facts are established primarily through the construction of a Lyapunov function which we generate as the solution to a sequence of Poisson equations. Unlike a number of other works, however, our Lyapunov function is constructed in a systematic way, and we present a meta-algorithm we hope will be applicable to other problems. We conclude by proving positivity properties of the transition density by using Malliavin calculus via some unusually explicit calculations. arXiv:1111.175v1 [math.PR]
Johan Brauer : The Stabilisation of Equilibria in Evolutionary Game Dynamics through Mutation
- Probability ( 208 Views )The multi-population replicator dynamics (RD) can be considered a dynamic approach to the study of multi-player games, where it was shown to be related to Cross-learning, as well as of systems of co-evolving populations. However, not all of its equilibria are Nash equilibria (NE) of the underlying game, and neither convergence to an NE nor convergence in general are guaranteed. Although interior equilibria are guaranteed to be NE, no interior equilibrium can be asymptotically stable in the multi-population RD, resulting, e.g., in cyclic orbits around a single interior NE. We report on our investigation of a new notion of equilibria of RD, called mutation limits, which is based on the inclusion of a naturally arising, simple form of mutation, but is invariant under the specific choice of mutation parameters. We prove the existence of such mutation limits for a large range of games, and consider an interesting subclass, that of attracting mutation limits. Attracting mutation limits are approximated by asymptotically stable equilibria of the (mutation-)perturbed RD, and hence, offer an approximate dynamic solution of the underlying game, especially if the original dynamic has no asymptotically stable equilibria. Therefore, the presence of mutation will indeed stabilise the system in certain cases and make attracting mutation limits near-attainable. Furthermore, the relevance of attracting mutation limits as a game theoretic equilibrium concept is emphasised by the relation of (mutation-)perturbed RD to the Q-learning algorithm in the context of multi-agent reinforcement learning. However, in contrast to the guaranteed existence of mutation limits, attracting mutation limits do not exist in all games, raising the question of their characterization.
Ofer Zeitouni : Slowdown in Branching random walks and the inhomogeneous KPP equation
- Probability ( 207 Views )The classical result of Bramson gives a precise logarithmic correction to the speed of front propagation in one dimensional branching random walks and Brownian motions. I will discuss several variants of this model where the slowdown term is not classical.
Hendrik Weber : Convergence of the two-dimensional dynamic Ising-Kac model
- Probability ( 207 Views )The Ising-Kac model is a variant of the ferromagnetic Ising model in which each spin variable interacts with all spins in a neighbourhood of radius $\ga^{-1}$ for $\ga \ll1$ around its base point. We study the Glauber dynamics for this model on a discrete two-dimensional torus $\Z^2/ (2N+1)\Z^2$, for a system size $N \gg \ga^{-1}$ and for an inverse temperature close to the critical value of the mean field model. We show that the suitably rescaled coarse-grained spin field converges in distribution to the solution of a non-linear stochastic partial differential equation. This equation is the dynamic version of the $\Phi^4_2$ quantum field theory, which is formally given by a reaction diffusion equation driven by an additive space-time white noise. It is well-known that in two spatial dimensions, such equations are distribution valued and a \textit{Wick renormalisation} has to be performed in order to define the non-linear term. Formally, this renormalisation corresponds to adding an infinite mass term to the equation. We show that this need for renormalisation for the limiting equation is reflected in the discrete system by a shift of the critical temperature away from its mean field value. This is a joint work with J.C. Mourrat (Lyon).
Robin PEMANTLE : Zeros of random analytic functions and their derivatives
- Probability ( 207 Views )I will discuss a series of results concerning the effect of the derivative operator on the locations of the zeros of a random analytic function. Two models are considered. In the first, the zeros are chosen IID from some measure on the complex plane. In the second, the zeros are chosen to be a Poisson point process on the real line. Repeated differentiation results in a nearly deterministic zero set.
Nicolas Zygouras : Pinning-depinning transition in Random Polymers
- Probability ( 206 Views )Random Polymers are modeled as a one dimensional random walk (S_n), with excursion length distribution P(S_1 = n) = \phi(n)/n^\alpha, \alpha > 1 and \phi(n) a slowly varying function. The polymer gets a random reward whenever it visits or crosses an interface. The random rewards are realised as a sequence of i.i.d. variables (\omega_n). Depending on the relation between the mean value of the disorder \omega_n and the temperature, the polymer might prefer to stick to the interface (pinnings) or undergo a long excursion away from it (depinning). In this talk we will review some aspects of random polymer models. We will also discuss in more detail the pinning-depinning transition of the `Pinning' model and prove its annealed and quenched critical points are distinct. This is joint work with Ken Alexander.
Krishna Athreya : Coalescence in Galton-Watson trees
- Probability ( 206 Views )Consider a Galton-Watson tree. Pick two individuals at random by simple random sampling from the nth generation and trace heir lines of descent back in time till they meet. Call that generation X_n. In this talk we will discuss the probability distribution of X_n and its limits for the four cases m <1, m=1, m greater than 1 but finite, and m infinite, where m is the mean offspring size.
Laurie Field : Relating variants of SLE using the Brownian loop measure
- Probability ( 205 Views )In this talk I will discuss a framework for transforming one variant of the Schramm�Loewner evolution (SLE) into another. The main tool in this approach is the Brownian loop measure. A simple case is to relate the reversal of radial SLE to whole-plane SLE, which looks the same locally. Writing the formula one might naïvely expect fails, because the loop measure term is infinite. In joint work with Greg Lawler, we show that there is a finite normalized version of the loop measure term, and that with this change, the naïve formula relating the two SLEs becomes correct.
David Sivakoff : Nucleation scaling in jigsaw percolation
- Probability ( 203 Views )Jigsaw percolation is a nonlocal process that iteratively merges elements of a partition of the vertices in a deterministic puzzle graph according to the connectivity properties of a random collaboration graph. We assume the collaboration graph is an Erdos-Renyi graph with edge probability p, and investigate the probability that the puzzle graph is solved, that is, that the process eventually produces the partition {V}. In some generality, for puzzle graphs with N vertices of degrees about D, this probability is close to 1 or 0 depending on whether pD(log N) is large or small. We give more detailed results for the one dimensional cycle and two dimensional torus puzzle graphs, where in many instances we can prove sharp phase transitions.
Rick Durrett : Voter Model Perturbations
- Probability ( 202 Views )We consider particle systems that are perturbations of the voter model and show that when space and time are rescaled the system converges to a solution of a reaction diffusion equation in dimensions $d \ge 3$. Combining this result with properties of the PDE and a block construction, we give general, and often asymptotically sharp, conditions for the existence of non-trivial stationary distributions, and for extinction of one type. As applications, we describe the phase diagrams of three systems when the parameters are close to the voter model: (i) a stochastic spatial Lotka-Volterra model of Neuhauser and Pacala, (ii) a model of the evolution of cooperation of Ohtsuki, Hauert, Lieberman, and Nowak, and (iii) a continuous time version of the non-linear voter model of Molofsky, Durrett, Dushoff, Griffeath, and Levin. The first two applications confirm conjectures of Cox and Perkins and Ohtsuki et al.
F. Baudoin : Functional Inequalities: Probability and geometry in interaction
- Probability ( 202 Views )The talk will be an introduction to the world of functional inequalities with a geometric content. I will in particular focus on the family of log-Sobolev and Sobolev inequalities and show how these inequalities are closely connected to the geometry of the ambient space. I will mainly follow the Bakry-Ledoux approach to these inequalities which is is based on the notion of intrinsic curvature of a diffusion operator and at the end of the presentation will explain how these ideas have recently been used in sub-Riemannian geometry.
Brian Rider : Log-gases and Tracy-Widom laws
- Probability ( 201 Views )The now ubiquitous Tracy-Widom laws were first discovered in the context of the Gaussian Orthogonal, Unitary, and Symplectic Ensembles (G{O/U/S}E) of random matrix theory. The latter may be viewed as logarithmic gases with quadratic (Gaussian) potential at three special inverses temperatures (beta=1,2,4). A few years back, Jose Ramirez, Balint Virag, and I showed that that one obtains generalizations of the Tracy-Widom laws at all inverse temperatures (beta>0), though still for quadratic potentials. I'll explain how similar ideas (and considerably more labor) extends the result to general potential, general temperature log-gases. This is joint work with Manjunath Krishnapur and Balint Virag.
Elizabeth Meckes : Projections of probability distributions: a measure-theoretic Dvoretzky theorem
- Probability ( 196 Views )Dvoretzky's theorem tells us that if we put an arbitrary norm on n-dimensional Euclidean space, no matter what that normed space is like, if we pass to subspaces of dimension about log(n), the space looks pretty much Euclidean. A related measure-theoretic phenomenon has long been observed: the (one-dimensional) marginals of many natural high-dimensional probability distributions look about Gaussian. A question which had received little attention until recently is whether this phenomenon persists for k-dimensional marginals for k growing with n, and if so, for how large a k? In this talk I will discuss recent work showing that the phenomenon does indeed persist if k less than 2log(n)/log(log(n)), and that this bound is sharp (even the 2!).
David Andeerson : Stochastic models of biochemical reaction systems
- Probability ( 182 Views )I will present a tutorial on the mathematical models utilized in molecular biology. I will begin with an introduction to the usual stochastic and deterministic models, and then introduce terminology and results from chemical reaction network theory. I will end by presenting the Â?deficiency zeroÂ? theorem in both the deterministic and stochastic settings.
Gerandy Brito : Alons conjecture in random bipartite biregular graphs with applications.
- Probability ( 177 Views )This talk concerns to spectral gap in random regular graphs. We prove that almost all bipartite biregular graphs are almost Ramanujan by providing a tight upper bound for the second eigenvalue of its adjacency operator. The proof relies on a technique introduced recently by Massoullie, which we developed for random regular graphs. The same analysis allow us to recover hidden communities in random networks via spectral algorithms.
Yu-ting Chen : Mean-field diffusions in stochastic spatial death-birth models.
- Probability ( 169 Views )In this talk, I will discuss a generalized Moran process from the evolutionary game theory. The generalization incorporates arrangement of by graphs and games among individuals. For these additional features, there has been consistent interest in using general spatial structure as a way to explain the ubiquitous game behavior in biological evolutions; the introduction of games leads to technical complications as basic as nonlinearity and asymmetry in the model. The talk will be centered around a seminal finding in the evolutionary game theory that was obtained more than a decade ago. By an advanced mean-field method, it reduces the infinite-dimensional problem of solving for the game fixation probabilities to a one-dimensional diffusion problem in the limit of a large population. The recent mathematical results and some related mathematical methods will be explained.
Alex Blumenthal : Chaotic regimes for random dynamical systems
- Probability ( 168 Views )It is anticipated that chaotic regimes (e.g., strange attractors) arise in a wide variety of dynamical systems, including those arising from the study of ensembles of gas particles and fluid mechanics. However, in most cases the problem of rigorously verifying asymptotic chaotic regimes is notoriously difficult. For volume-preserving systems (e.g., incompressible fluid flow or Hamiltonian systems), these issues are exemplified by coexistence phenomena: even in quite simple models which should be chaotic, e.g. the Chirikov standard map, completely opposite dynamical regimes (elliptic islands vs. hyperbolic sets) can be tangled together in phase space in a convoluted way. Recent developments have indicated, however, that verifying chaos is tractable for systems subjected to a small amount of noiseâ?? from the perspective of modeling, this is not so unnatural, as the real world is inherently noisy. In this talk, I will discuss two recent results: (1) a large positive Lyapunov exponent for (extremely small) random perturbations of the Chirikov standard map, and (2) a positive Lyapunov exponent for the Lagrangian flow corresponding to various incompressible stochastic fluids models, including stochastic 2D Navier-Stokes and 3D hyperviscous Navier-Stokes on the periodic box. The work in this talk is joint with Jacob Bedrossian, Samuel Punshon-Smith, Jinxin Xue and Lai-Sang Young.
Leonid Koralov : An Inverse Problem for Gibbs Fields
- Probability ( 168 Views )It is well known that for a regular stable potential of pair interaction and a small value of activity one can define the corresponding Gibbs field (a measure on the space of configurations of points in $\mathbb{Z}^d$ or $\mathbb{R}^d$). We consider a converse problem. Namely, we show that for a sufficiently small constant $\overline{\rho}_1$ and a sufficiently small function $\overline{\rho}_2(x)$, $x \in \mathbb{Z}^d$ or $\mathbb{R}^d$, there exist a hard core pair potential, and a value of activity, such that $\overline{\rho}_1$ is the density and $\overline{\rho}_2$ is the pair correlation function of the corresponding Gibbs field.
Mohammad Ghomi : Topology of Locally convex hypersurfaces with prescribed boundary
- Probability ( 167 Views )An open problem in Classical Differential Geometry, posed by S. T. Yau, asks when does a simple closed curve in Euclidean 3-space bound a surface of positive curvature? We will give a survey of recent results related to this problem, including connections with the h-principle, Monge-Ampere equations, and Alexandrov spaces with curvature bounded below. In particular we will discuss joint work with Stephanie Alexander and Jeremy Wong on Topological finiteness theorems for nonnegatively curved surfaces filling a prescribed boundary, which use in part the finiteness and stability theorems of Gromov and Perelman.