## Li-Cheng Tsai : Interacting particle systems with moving boundaries

- Probability ( 215 Views )In this talk I will go over two examples of one-dimensional interacting particle systems: Aldous' up-the-river problem, and a modified Diffusion Limited Growth. I will explain how these systems connect to certain PDE problems with boundaries. For the up-the-river problem this connection helps to solve Aldous conjecture regarding an optimal strategy. For the modified DLA, this connection helps to characterize the scaling exponent and scaling limit of the boundary at the critical density. This talk is based on joint work with Amir Dembo and Wenpin Tang.

## Nicolas Zygouras : Pinning-depinning transition in Random Polymers

- Probability ( 206 Views )Random Polymers are modeled as a one dimensional random walk (S_n), with excursion length distribution P(S_1 = n) = \phi(n)/n^\alpha, \alpha > 1 and \phi(n) a slowly varying function. The polymer gets a random reward whenever it visits or crosses an interface. The random rewards are realised as a sequence of i.i.d. variables (\omega_n). Depending on the relation between the mean value of the disorder \omega_n and the temperature, the polymer might prefer to stick to the interface (pinnings) or undergo a long excursion away from it (depinning). In this talk we will review some aspects of random polymer models. We will also discuss in more detail the pinning-depinning transition of the `Pinning' model and prove its annealed and quenched critical points are distinct. This is joint work with Ken Alexander.

## Rick Durrett : Voter Model Perturbations

- Probability ( 199 Views )We consider particle systems that are perturbations of the voter model and show that when space and time are rescaled the system converges to a solution of a reaction diffusion equation in dimensions $d \ge 3$. Combining this result with properties of the PDE and a block construction, we give general, and often asymptotically sharp, conditions for the existence of non-trivial stationary distributions, and for extinction of one type. As applications, we describe the phase diagrams of three systems when the parameters are close to the voter model: (i) a stochastic spatial Lotka-Volterra model of Neuhauser and Pacala, (ii) a model of the evolution of cooperation of Ohtsuki, Hauert, Lieberman, and Nowak, and (iii) a continuous time version of the non-linear voter model of Molofsky, Durrett, Dushoff, Griffeath, and Levin. The first two applications confirm conjectures of Cox and Perkins and Ohtsuki et al.

## David Andeerson : Stochastic models of biochemical reaction systems

- Probability ( 181 Views )I will present a tutorial on the mathematical models utilized in molecular biology. I will begin with an introduction to the usual stochastic and deterministic models, and then introduce terminology and results from chemical reaction network theory. I will end by presenting the deficiency zero theorem in both the deterministic and stochastic settings.

## Yu Gu : Scaling limits of random fluctuations in homogenization of divergence form operators

- Probability ( 179 Views )Recently, quantitative stochastic homogenization of operators in divergence form has witnessed important progress. Our goal is to go beyond the error bound to analyze statistical fluctuations around the homogenized limit. We prove a pointwise two-scale expansion and a large scale central limit theorem for the solution. The approach is probabilistic. The main ingredients include the Kipnis-Varadhan method applied to symmetric diffusion in random environment, a quantitative martingale central limit theorem, the Helffer-Sjostrand covariance representation and Stein's method. This is joint work with Jean-Christophe Mourrat.

## Sayan Mukherjee : Random walks on simplicial complexes

- Probability ( 176 Views )The graph Laplacian has been of interest in statistics, machine learning, and theoretical computer science in areas from manifold learning to analysis of Markov chains. A common uses of the graph Laplacian has been in spectral clustering and dimension reduction. A theoretical motivation for why spectral clustering works is the Cheeger inequality which relates the eigenvalues of the graph Laplacian to how disconnected the graph is, Betti zero for topology. We ask how the Cheeger inequality extends to higher-order Laplacians, operators on simplicial complexes, and what clustering means for these higher-order operators. This is joint work with John Steenbergen Related to the graph Laplacian is the idea of random walks on graphs. We will define a random walk on simplicial complexes with a stationary distribution that is related to the k-dimensional Laplacian. The stationary distribution reveals (co)homology of the geometry of the random walk. We apply this random walk to the problem of semi-supervised learning, given some labeled observations and many unlabeled observations how does one propagate the labels.

## Amarjit Budhiraja : Large Deviations for Small Noise Infinite Dimensional Stochastic Dynamical Systems

- Probability ( 168 Views )The large deviations analysis of solutions to stochastic differential equations and related processes is often based on approximation. The construction and justification of the approximations can be onerous, especially in the case where the process state is infinite dimensional. In this work we show how such approximations can be avoided for a variety of infinite dimensional models driven by some form of Brownian noise. The approach is based on a variational representation for functionals of Brownian motion. Proofs of large deviations properties are reduced to demonstrating basic qualitative properties (existence, uniqueness, and tightness) of certain perturbations of the original process. This is a joint work with P.Dupuis and V.Maroulas.

## Leonid Koralov : An Inverse Problem for Gibbs Fields

- Probability ( 167 Views )It is well known that for a regular stable potential of pair interaction and a small value of activity one can define the corresponding Gibbs field (a measure on the space of configurations of points in $\mathbb{Z}^d$ or $\mathbb{R}^d$). We consider a converse problem. Namely, we show that for a sufficiently small constant $\overline{\rho}_1$ and a sufficiently small function $\overline{\rho}_2(x)$, $x \in \mathbb{Z}^d$ or $\mathbb{R}^d$, there exist a hard core pair potential, and a value of activity, such that $\overline{\rho}_1$ is the density and $\overline{\rho}_2$ is the pair correlation function of the corresponding Gibbs field.

## Mohammad Ghomi : Topology of Locally convex hypersurfaces with prescribed boundary

- Probability ( 166 Views )An open problem in Classical Differential Geometry, posed by S. T. Yau, asks when does a simple closed curve in Euclidean 3-space bound a surface of positive curvature? We will give a survey of recent results related to this problem, including connections with the h-principle, Monge-Ampere equations, and Alexandrov spaces with curvature bounded below. In particular we will discuss joint work with Stephanie Alexander and Jeremy Wong on Topological finiteness theorems for nonnegatively curved surfaces filling a prescribed boundary, which use in part the finiteness and stability theorems of Gromov and Perelman.

## David Nualart : Regularity of the density of the stochastic heat equation

- Probability ( 163 Views )In this talk we present a recent result on the smoothness of the density for the solution of a semilinear heat equation with multiplicative space-time Gaussian white noise. We assume that the coefficients are smooth and the diffusion coefficient is not identically zero at the initial time. The proof of this result is based on the techniques of the Malliavin calculus, and the existence of negative moments for the solution of a linear heat equation with multiplicative space-time white noise.

## Sebastien Roch : Cascade Processes in Social Networks

- Probability ( 160 Views )Social networks are often represented by directed graphs where the nodes are individuals and the edges indicate a form of social relationship. A simple way to model the diffusion of ideas, innovative behavior, or word-of-mouth effects on such a graph is to consider a stochastic process of ``infection'': each node becomes infected once an activation function of the set of its infected neighbors crosses a random threshold value. I will prove a conjecture of Kempe, Kleinberg, and Tardos which roughly states that if such a process is ``locally'' submodular then it must be ``globally'' submodular on average. The significance of this result is that it leads to a good algorithmic solution to the problem of maximizing the spread of influence in the network--a problem known in data mining as "viral marketing"'. This is joint work with Elchanan Mossel.

## Louigi Addario-Berry : Probabilistic aspects of minimum spanning trees

- Probability ( 160 Views )Abstract: One of the most dynamic areas of probability theory is the study of the behaviour of discrete optimization problems on random inputs. My talk will focus on the probabilistic analysis of one of the first and foundational combinatorial optimization problems: the minimum spanning tree problem. The structure of a random minimum spanning tree (MST) of a graph G turns out to be intimately linked to the behaviour of critical and near-critical percolation on G. I will describe this connection and some of my results, alone and with coauthors, on the structure, scaling limits, and volume growth of random MSTs. It turns out that, on high-dimensional graphs, random minimum spanning trees are expected to be three-dimensional when viewed intrinsically, and six-dimensional when viewed as embedded objects.

## Ronnie Sircar : Games with Exhaustible Resources

- Probability ( 160 Views )We study N-player repeated Cournot competitions that model the determination of price in an oligopoly where firms choose quantities. These are nonzero-sum (ordinary and stochastic) differential games, whose value functions may be characterized by systems of nonlinear Hamilton-Jacobi-Bellman partial differential equations. When the quantity being produced is in finite supply, such as oil, exhaustibility enters as boundary conditions for the PDEs. We analyze the problem when there is an alternative, but expensive, resource (for example solar technology for energy production), and give an asymptotic approximation in the limit of small exhaustibility. We illustrate the two-player problem by numerical solutions, and discuss the impact of limited oil reserves on production and oil prices in the dupoly case. Joint work with Chris Harris (Cambridge University) and Sam Howison (Oxford University).

## Santosh Vempala : Logconcave Random Graphs

- Probability ( 156 Views )We propose the following model of a random graph on $n$ vertices. Let F be a distribution in R_+^{n(n-1)/2} with a coordinate for every pair ij with 1 \le i,j \le n. Then G_{F,p} is the distribution on graphs with n vertices obtained by picking a random point X from F and defining a graph on n vertices whose edges are pairs ij for which X_{ij} \le p. The standard Erd\H{o}s-R\'{e}nyi model is the special case when F is uniform on the 0-1 unit cube. We determine basic properties such as the connectivity threshold for quite general distributions. We also consider cases where the X_{ij} are the edge weights in some random instance of a combinatorial optimization problem. By choosing suitable distributions, we can capture random graphs with interesting properties such as triangle-free random graphs and weighted random graphs with bounded total weight. This is joint work with Alan Frieze (CMU) and Juan Vera (Waterloo). The talk will be self-contained and no prior knowledge of random graphs is assumed.

## Jeremy Quastel : The effect of noise on KPP traveling fronts

- Probability ( 155 Views )It was noticed experimentally in the late 90's that the speeds of traveling fronts in microscopic systems approximating the KPP equation converge unusually slowly to their continuum values. Brunet and Derrida made a very precise conjecture for the basic model equation, which is the KPP equation perturbed by white noise. We will explain the conjecture and sketch the main ideas of the proof. This is joint work with Carl Mueller and Leonid Mytnik.

## Krishna Athreya : Preferential attachment random graphs with general weight function

- Probability ( 155 Views )Consider a network of sites growing over time such that at step n a newcomer chooses a vertex from the existing vertices with probability proportional to a function of the degree of that vertex, i.e., the number of other vertices that this vertex is connected to. This is called a preferential attachment random graph. The objects of interest are the growth rates for the growth of the degree for each vertex with n and the behavior of the empirical distribution of the degrees. In this talk we will consider three cases: the weight function w(.) is superlinear, linear, and sublinear. Using recently obtained limit theorems for the growth rates of a pure birth continuous time Markov chains and an embedding of the discrete time graph sequence in a sequence of continuous time pure birth Markov chains, we establish a number of results for all the three cases. We show that the much discussed power law growth of the degrees and the power law decay of the limiting degree distribution hold only in the linear case, i.e., when w(.) is linear

## Mark Huber : Conditions for Parallel and Simulated Tempering to be fast or slow

- Probability ( 153 Views )In Markov chain Monte Carlo, a Markov chain is constructed whose limiting distribution is equal to some target distribution. While it is easy to build such chains, for some distributions the standard constructions can take exponentially long to come near that limit, making the chain torpidly mixing. When the limit is reached in polynomial time, the chain is rapidly mixing. Tempering is a technique designed to speed up the convergence of Markov chains by adding an extra temperature parameter that acts to smooth out the target distribution. In this talk I will present joint work with Dawn Woodard (Cornell) and Scott Schmidler (Duke) that give sufficient conditions for a tempering chain to be torpidly mixing, and a related (but different) set of conditions for the chain to be rapidly mixing.

## Jan Wehr : Entanglement percolation in quantum networks

- Probability ( 153 Views )Reliable information transmission between two sites of a network naturally leads to a percolation problem. When the information to be transmitted is quantum an exciting possibility arises: transform the network performing well chosen measurements to enhance the transmission probability. This idea, introduced recently by Acin, Cirac and Lewenstein is now systematically and successfully applied to a variety of two-dimensional networks, but open questions show that a complete theory is missing. The talk will involve some quanta, some network geometry, some percolation and, hopefully, some fun. No knowledge of quantum theory or percolation theory is assumed. Graduate students are encouraged to attend.

## James Gleeson : Determinants of meme popularity

- Probability ( 150 Views )We will describe and analyze some models of the spread of information on Twitter. The competition between memes fro the limited resource of user attention leads to critical branching processes, and resulting heavy tailed distributions for meme popularity.

## Davar Khoshnevisan : Nonlinear Stochastic Heat Equations: Existence, Growth, and Intermittency

- Probability ( 149 Views )We introduce some recent advances in the study of nonlinear stochastic heat equations, and related stochastic PDEs. Special attention will be paid to the local structure of the solution. In particular, we show that, frequently, the solution exhibits a form of intermittency. Time permitting, we discuss related connections to classical potential theory and mathematical physics as well.

## Asaf Nachmias : The Alexander-Orbach Conjecture Holds in High Dimensions

- Probability ( 137 Views )It is known that the simple random walk on the unique infinite cluster of supercritical percolation on Z^d diffuses in the same way it does on the original lattice. In critical percolation, however, the behavior of the random walk changes drastically. The infinite incipient cluster (IIC) of percolation on Z^d can be thought of as the critical percolation cluster conditioned on being infinite. Alexander and Orbach (1982) conjectured that the spectral dimension of the IIC is 4/3. This means that the probability of an n-step random walk to return to its starting point scales like n^{-2/3} (in particular, the walk is recurrent). In this work we prove this conjecture when d>18; that is, where the lace-expansion estimates hold. Joint work with Gady Kozma.

## Jan Wehr : Noise-induced drift---theory and experiment

- Probability ( 132 Views )Recent experiments show that an overdamped Brownian particle in a diffusion gradient experiences an additional drift. Equivalently, the Langevin equation describing the particle's motion should be interpreted according to the "anti-Ito" definition of stochastic integrals. I will explain this effect mathematically by studying the zero-mass limit of the stochastic Newton's equation modeling the particle's motion and, using a multiscale expansion, extend the analysis to a wide class of equations, including systems with colored noise and delay terms, interpreting recent electrical circuit experiments. The results were obtained in a collaboration with experimental physicists in Stuttgart: Giovanni Volpe, Clemens Bechinger, Laurent Helden and Thomas Brettschneider, as well as with the mathematics graduate students at the University of Arizona: Scott Hottovy and Austin McDaniel.

## Mokshay Madiman : A Shannon-McMillan-Breiman theorem for log-concave measures and applications in convex geometry

- Probability ( 130 Views )Our primary goal is to describe a strong quantitative form of the Shannon-McMillan-Breiman theorem for log-concave probability measures on linear spaces, even in the absence of stationarity. The main technical result is a concentration of measure inequality for the ``information content'' of certain random vectors. We will also briefly discuss implications. In particular, by combining this concentration result with ideas from information theory and convex geometry, we obtain a reverse entropy power inequality for convex measures that generalizes the reverse Brunn-Minkowski inequality of V. Milman. Along the way, we also develop a new information-theoretic formulation of Bourgain's hyperplane conjecture, as well as some Gaussian comparison inequalities for the entropy of log-concave probability measures. This is joint work with Sergey Bobkov (Minnesota).

## Michael Damron : A simplified proof of the relation between scaling exponents in first passage percolation

- Probability ( 130 Views )In first passage percolation, we place i.i.d. non-negative weights on the nearest-neighbor edges of Z^d and study the induced random metric. A long-standing conjecture gives a relation between two "scaling exponents": one describes the variance of the distance between two points and the other describes the transversal fluctuations of optimizing paths between the same points. In a recent breakthrough work, Sourav Chatterjee proved this conjecture using a strong definition of the exponents. I will discuss work I just completed with Tuca Auffinger, in which we introduce a new and intuitive idea that replaces Chatterjee's main argument and gives an alternative proof of the relation. One advantage of our argument is that it does not require a non-trivial technical assumption of Chatterjee on the weight distribution.

## Gautam Iyer : Anomalous diffusion in fast cellular flows

- Probability ( 129 Views )In '53, GI Taylor estimated the effective dispersion rate of a solute diffusing in the presence of a laminar flow in a pipe. It turns out that the length scales involved in typical pipes are too short for Taylor's result to apply. The goal of my talk will be to establish a preliminary estimate for the effective dispersion rate in a model problem at time scales much shorter than those required in Taylor's result. Precisely, I will study a diffusive tracer in the presence of a fast cellular flow. The main result (joint with A. Novikov) shows that the variance at intermediate time scales is of order $\sqrt{t}$. This was conjectured by W. Young, and is consistent with an anomalous diffusive behaviour.

## Leonid Bogachev : Gaussian fluctuations for Plancherel partitions

- Probability ( 127 Views )The limit shape of Young diagrams under the Plancherel measure was found by Vershik & Kerov (1977) and Logan & Shepp (1977). We obtain a central limit theorem for fluctuations of Young diagrams in the bulk of the partition 'spectrum'. More specifically, under a suitable (logarithmic) normalization, the corresponding random process converges (in the FDD sense) to a Gaussian process with independent values. We also discuss a link with an earlier result by Kerov (1993) on the convergence to a generalized Gaussian process. The proof is based on poissonization of the Plancherel measure and an application of a general central limit theorem for determinantal point processes. (Joint work with Zhonggen Su.) (see more details hear.

## Eric Foxall : The compulsive gambler with allowances

- Probability ( 126 Views )We consider a process in which a finite set of n agents continually receive a 1 dollar allowance and gamble their fortunes, all in, with one another at a constant rate. This is a variation on the existing compulsive gambler process; in that process, initial fortunes are prescribed and no further allowances are given out. For our process, we find that after some time the distribution of wealth settles into a pattern in which most people have only a few dollars, a few are very wealthy, and a single person possesses most of the cash currently present in the population. In addition, eventually the only way to attain first rank is by winning a bet against the current champion. Moreover, if agents play a fair game, i.e., the probability of winning a bet is proportional to the players' fortunes, the title of champion is assumed by every player infinitely often, although it changes less and less frequently as time goes on. Finally, by examining the process from both the perspective of typical fortune, and that of large fortune, we can go one step further and obtain two distinct limiting processes as n --> infty, with each one admitting a detailed description of its dynamics.

## Jeremy Quastel : The Kardar-Parisi-Zhang equation and its universality class

- Probability ( 124 Views )The KPZ equation was introduced in 1986, and has become the default model in physics for random interface growth. It is a member of a large universality class with non-standard fluctuations, including directed random polymers. Even in one dimension, it turned out to be difficult to interpret and analyze mathematically, but at the same time to have a large degree of exact solvability. We will survey the history and recent progress.

## Richard Bass : Uniqueness in law for parabolic SPDEs and infinite dimensional SDEs

- Probability ( 122 Views )We consider the heat equation on an interval with heat being introduced according to a random mechanism. When the random mechanism is space-time white noise, this equation has been much studied. We look at the case where the white noise is modified by a function A(u)(x) of the current temperatures u and where A is H\"older continuous as a function of u. Unlike other work along these lines, A(u)(x) can depend on the temperatures throughout the interval. Our method involves looking at the Fourier coefficients, which leads to an infinite dimensional system of stochastic differential equations. This is joint work with Ed Perkins.

## Davar Khoshnevisan : A macroscopic multifractal analysis of parabolic stochastic PDEs

- Probability ( 122 Views )We will show that the solutions to a large family of stochastic PDEs that behave as the linear heat equation develop large-scale space-time peaks on infinitely-many different scales. We formalize this assertion by appealing to the Barlow-Taylor theory of macroscopic fractals. We will also present some earlier work on fixed-time results for comparison purposes. This talk is based on a paper and a work in progress with Kunwoo Kim (Technion) and Yimin Xiao (Michigan State University).