Quicklists
public 01:44:51

Ruth Williams : Control of Stochastic Processing Networks

  -   Probability ( 222 Views )

Stochastic processing networks (SPNs) are a significant generalization of conventional queueing networks that allow for flexible scheduling through dynamic sequencing and alternate routing. SPNs arise naturally in a variety of applications in operations management and their control and analysis present challenging mathematical problems. One approach to these problems, via approximate diffusion control problems, has been outlined by J. M. Harrison. Various aspects of this approach have been developed mathematically, including a reduction in dimension of the diffusion control problem. However, other aspects have been less explored, especially, solution of the diffusion control problem, derivation of policies by interpretating such solutions, and limit theorems that establish optimality of such policies in a suitable asymptotic sense. In this talk, for a concrete class of networks called parallel server systems which arise in service network and computer science applications, we explore previously undeveloped aspects of Harrison's scheme and illustrate the use of the approach in obtaining simple control policies that are nearly optimal. Identification of a graphical structure for the network, an invariance principle and properties of local times of reflecting Brownian motion, will feature in our analysis. The talk will conclude with a summary of the current status and description of open problems associated with the further development of control of stochastic processing networks. This talk will draw on aspects of joint work with M. Bramson, M. Reiman, W. Kang and V. Pesic.

public 01:24:58

Pascal Maillard : Interval fragmentations with choice

  -   Probability ( 132 Views )

Points fall into the unit interval according to a certain rule, splitting it up into fragments. An example rule is the following: at each step, two points are randomly drawn from the unit interval and the one that falls into the smaller (or larger) interval is discarded, while the other one is kept. This process is inspired by the so-called "power of choice" paradigm originating in the computer science literature on balanced load allocation models. The question of interest is how much the rule affects the geometry of the point cloud. With Elliot Paquette [1] we introduced a general version of this interval fragmentation model and showed that the empirical distribution of rescaled interval lengths converges almost surely to a deterministic probability measure. I will report on this work as well as on work in progress [2] where we show that the empirical measure of the points converges almost surely to the uniform distribution. The proofs involve techniques from stochastic approximation, non-linear integro-differential equations, ergodic theory for Markov processes and perturbations of semigroups on L^p spaces, amongst other things. [1] Maillard, P., & Paquette, E. (2016). Choices and intervals. Israel Journal of Mathematics, 212(1), 337Â?384. [2] Maillard, P., & Paquette, E. (in preparation). Interval fragmentations with choice: equidistribution and the evolution of tagged fragments

public 01:34:50

Ted Cox : Convergence of finite voter model densities

  -   Probability ( 118 Views )