Measure-Theoretic Dvoretzky Theorem and Applications to Data Science
- Probability,Uploaded Videos ( 1451 Views )SEPC 2021 in honor of Elizabeth Meckes. Slides from the talks and more information are available <a href="https://services.math.duke.edu/~rtd/SEPC2021/SEPC2021.html">at this link (here).</a>
Oliver Tough : The Fleming-Viot Particle System with McKean-Vlasov dynamics
- Probability,Uploaded Videos ( 1332 Views )Quasi-Stationary Distributions (QSDs) describe the long-time behaviour of killed Markov processes. The Fleming-Viot particle system provides a particle representation for the QSD of a Markov process killed upon contact with the boundary of its domain. Whereas previous work has dealt with killed Markov processes, we consider killed McKean-Vlasov processes. We show that the Fleming-Viot particle system with McKean-Vlasov dynamics provides a particle representation for the corresponding QSDs. Joint work with James Nolen.
Zoe Huang : Motion by mean curvature in interacting particle systems
- Probability,Uploaded Videos ( 1254 Views )There are a number of situations in which rescaled interacting particle systems have been shown to converge to a reaction diffusion equation (RDE) with a bistable reaction term. These RDEs have traveling wave solutions. When the speed of the wave is nonzero, block constructions have been used to prove the existence or nonexistence of nontrivial stationary distributions. Here, we follow the approach in a paper by Etheridge, Freeman, and Pennington to show that in a wide variety of examples when the RDE limit has a bistable reaction term and traveling waves have speed 0, one can run time faster and further rescale space to obtain convergence to motion by mean curvature. This opens up the possibility of proving that the sexual reproduction model with fast stirring has a discontinuous phase transition, and that in Region 2 of the phase diagram for the nonlinear voter model studied by Molofsky et al there were two nontrivial stationary distributions.
Alex Hening : Stochastic persistence and extinction
- Probability,Uploaded Videos ( 1224 Views )A key question in population biology is understanding the conditions under which the species of an ecosystem persist or go extinct. Theoretical and empirical studies have shown that persistence can be facilitated or negated by both biotic interactions and environmental fluctuations. We study the dynamics of n interacting species that live in a stochastic environment. Our models are described by n dimensional piecewise deterministic Markov processes. These are processes (X(t), r(t)) where the vector X denotes the density of the n species and r(t) is a finite state space process which keeps track of the environment. In any fixed environment the process follows the flow given by a system of ordinary differential equations. The randomness comes from the changes or switches in the environment, which happen at random times. We give sharp conditions under which the populations persist as well as conditions under which some populations go extinct exponentially fast. As an example we look at the competitive exclusion principle from ecology, which says in its simplest form that two species competing for one resource cannot coexist, and show how the random switching can facilitate coexistence.
Roman Vershynin : Mathematics of synthetic data and privacy
- Probability,Uploaded Videos ( 1110 Views )An emerging way to protect privacy is to replace true data by synthetic data. Medical records of artificial patients, for example, could retain meaningful statistical information while preserving privacy of the true patients. But what is synthetic data, and what is privacy? How do we define these concepts mathematically? Is it possible to make synthetic data that is both useful and private? I will tie these questions to a simple-looking problem in probability theory: how much information about a random vector X is lost when we take conditional expectation of X with respect to some sigma-algebra? This talk is based on a series of papers with March Boedihardjo and Thomas Strohmer.
David Aldous: Probability Seminar
- Probability,Uploaded Videos ( 649 Views )David Aldous, Probability Seminar Sept 30, 2021 TITLE: Can one prove existence of an infectiousness threshold (for a pandemic) in very general models of disease spread? ABSTRACT: Intuitively, in any kind of disease transmission model with an infectiousness parameter, there should exist a critical value of the parameter separating a very likely from a very unlikely resulting pandemic. But even formulating a general conjecture is challenging. In the most simplistic model (SI) of transmission, one can prove this for an essentially arbitrary large weighted contact network. The proof for SI depends on a simple lemma concerning hitting times for increasing set-valued Markov processes. Can one extend to SIR or SIS models over similarly general networks, where the lemma is no longer applicable?
Max Xu : Random multiplicative functions and applications
- Probability ( 262 Views )Random multiplicative functions are probabilistic models for multiplicative arithmetic functions, such as Dirichlet characters or the Liouville function. In this talk, I will first quickly give an overview of the area, and then focus on some of the recent works on proving central limit theorems, connections to additive combinatorics, as well as some other deterministic applications. Part of the talk is based on joint work with Soundararajan, with Harper and Soundararajan (in progress) and with Angelo and Soundararajan (in progress).
Lea Popovic : Genealogy of Catalytic Populations
- Probability ( 230 Views )For neutral branching models of two types of populations there are three universality classes of behavior: independent branching, (one-sided) catalytic branching and mutually catalytic branching. Loss of independence in the two latter models generates many new features in the way that the populations evolve. In this talk I will focus on describing the genealogy of a catalytic branching diffusion. This is the many individual fast branching limit of an interacting branching particle model involving two populations, in which one population, the "catalyst", evolves autonomously according to a Galton-Watson process while the other population, the "reactant", evolves according to a branching dynamics that is dependent on the number of catalyst particles. We show that the sequence of suitably rescaled family forests for the catalyst and reactant populations converge in Gromov-Hausdorff topology to limiting real forests. We characterize their distribution via a reflecting diffusion and a collection of point-processes. We compare geometric properties and statistics of the catalytic branching forests with those of the "classical" (independent branching) forest. This is joint work with Andreas Greven and Anita Winter.
David Herzog : Supports of Degenerate Diffusion Processes: The Case of Polynomial Drift and Additive Noise
- Probability ( 223 Views )We discuss methods for computing supports of degenerate diffusion processes. We assume throughout that the diffusion satisfies a stochastic differential equation on Rd whose drift vector field X0 is ``polynomial'' and whose noise coefficients are constant. The case when each component of X0 is of odd degree is well understood. Hence we focus our efforts on X0 having at least one or more components of even degree. After developing methods to handle such cases, we shall apply them to specific examples, e.g. the Galerkin truncations of the Stochastic Navier-Stokes equation, to help establish ergodic properties of the resulting diffusion. One benefit to our approach is that, to prove such consequences, all we must do is compute certain Lie brackets.
Shankar Bhamidi : Flows, first passage percolation and random disorder in networks
- Probability ( 220 Views )Consider a connected network and suppose each edge in the network has a random positive edge weight. Understanding the structure and weight of the shortest path between nodes in the network is one of the most fundamental problems studied in modern probability theory and goes under the name first passage percolation. It arises as a fundamental building block in many interacting particle system models such as the spread of epidemics on networks. To a large extent such problems have been only studied in the context of the n-dimensional lattice. In the modern context these problems take on an additional significance with the minimal weight measuring the cost of sending information while the number of edges on the optimal path (hopcount) representing the actual time for messages to get between vertices in the network. Given general models of random graphs with random edge costs, can one develop techniques to analyze asymptotics of functionals of interest which are robust to the model formulation? The aim of this talk is to describe a heuristic based on continuous time branching processes which gives very easily, a wide array of asymptotic results for random network models in terms of the Malthusian rate of growth and the stable age distribution of associated branching process. These techniques allow us to solve not only first passage percolation problems rigorously but also understand functionals such as the degree distribution of shortest path trees, congestion across edges as well as asymptotics for betweeness centrality a concept of crucial interest in social networks, in terms of Cox processes and extreme value distributions. These techniques also allow one to exactly solve models of weak disorder in the context of the stochastic mean field model of distance, a model of great interest in probabilistic combinatorial optimization.
Jonathan Mattingly : Noise induced stabilization of dynamical systems
- Probability ( 208 Views )We investigate an example of noise-induced stabilization in the plane that was also considered in (Gawedzki, Herzog, Wehr 2010) and (Birrell,Herzog, Wehr 2011). We show that despite the deterministic system not being globally stable, the addition of additive noise in the vertical direction leads to a unique invariant probability measure to which the system converges at a uniform, exponential rate. These facts are established primarily through the construction of a Lyapunov function which we generate as the solution to a sequence of Poisson equations. Unlike a number of other works, however, our Lyapunov function is constructed in a systematic way, and we present a meta-algorithm we hope will be applicable to other problems. We conclude by proving positivity properties of the transition density by using Malliavin calculus via some unusually explicit calculations. arXiv:1111.175v1 [math.PR]
Johan Brauer : The Stabilisation of Equilibria in Evolutionary Game Dynamics through Mutation
- Probability ( 208 Views )The multi-population replicator dynamics (RD) can be considered a dynamic approach to the study of multi-player games, where it was shown to be related to Cross-learning, as well as of systems of co-evolving populations. However, not all of its equilibria are Nash equilibria (NE) of the underlying game, and neither convergence to an NE nor convergence in general are guaranteed. Although interior equilibria are guaranteed to be NE, no interior equilibrium can be asymptotically stable in the multi-population RD, resulting, e.g., in cyclic orbits around a single interior NE. We report on our investigation of a new notion of equilibria of RD, called mutation limits, which is based on the inclusion of a naturally arising, simple form of mutation, but is invariant under the specific choice of mutation parameters. We prove the existence of such mutation limits for a large range of games, and consider an interesting subclass, that of attracting mutation limits. Attracting mutation limits are approximated by asymptotically stable equilibria of the (mutation-)perturbed RD, and hence, offer an approximate dynamic solution of the underlying game, especially if the original dynamic has no asymptotically stable equilibria. Therefore, the presence of mutation will indeed stabilise the system in certain cases and make attracting mutation limits near-attainable. Furthermore, the relevance of attracting mutation limits as a game theoretic equilibrium concept is emphasised by the relation of (mutation-)perturbed RD to the Q-learning algorithm in the context of multi-agent reinforcement learning. However, in contrast to the guaranteed existence of mutation limits, attracting mutation limits do not exist in all games, raising the question of their characterization.
Hao Shen : Stochastic PDEs and regularity structures
- Probability ( 207 Views )In this talk I will review the basic ideas of the regularity structure theory developed by Martin Hairer, as well as its applications to stochastic PDE problems. I will then discuss my joint work with Hairer on the sine-Gordon equation and central limit theorems for stochastic PDEs.
Robin PEMANTLE : Zeros of random analytic functions and their derivatives
- Probability ( 207 Views )I will discuss a series of results concerning the effect of the derivative operator on the locations of the zeros of a random analytic function. Two models are considered. In the first, the zeros are chosen IID from some measure on the complex plane. In the second, the zeros are chosen to be a Poisson point process on the real line. Repeated differentiation results in a nearly deterministic zero set.
Laurie Field : Relating variants of SLE using the Brownian loop measure
- Probability ( 205 Views )In this talk I will discuss a framework for transforming one variant of the SchrammLoewner evolution (SLE) into another. The main tool in this approach is the Brownian loop measure. A simple case is to relate the reversal of radial SLE to whole-plane SLE, which looks the same locally. Writing the formula one might naïvely expect fails, because the loop measure term is infinite. In joint work with Greg Lawler, we show that there is a finite normalized version of the loop measure term, and that with this change, the naïve formula relating the two SLEs becomes correct.
Scott Schmidler : Mixing times for non-stationary processes
- Probability ( 204 Views )Markov chain methods for Monte Carlo simulation of complex physical or statistical models often require significant tuning. Recent theoretical progress has renewed interest in "adaptive" Markov chain algorithms which learn from their sample history. However, these algorithms produce non-Markovian, time-inhomogeneous, irreversible stochastic processes, making rigorous analysis challenging. We show that lower bounds on the mixing times of these processes can be obtained using familiar ideas of hitting times and conductance from the theory of reversible Markov chains. The bounds obtained are sufficient to demonstrate slow mixing of several recently proposed algorithms including adaptive Metropolis kernels and the equi-energy sampler on some multimodal target distributions. These results provide the first non-trivial bounds on the mixing times of adaptive MCMC samplers, and suggest a way of classifying adaptive schemes that leads to new hybrid algorithms. Many open problems remain.
Erika Berenice Roldan Roa : Asymptotic behavior of the homology of random polyominoes
- Probability ( 197 Views )In this talk we study the rate of growth of the expectation of the number of holes (the rank of the first homology group) in a polyomino with uniform and percolation distributions. We prove the existence of linear bounds for the expected number of holes of a polyomino with respect to both the uniform and percolation distributions. Furthermore, we exhibit particular constants for the upper and lower bounds in the uniform distribution case. This results can be extend, using the same techniques, to other polyforms and higher dimensions.
Elizabeth Meckes : Projections of probability distributions: a measure-theoretic Dvoretzky theorem
- Probability ( 196 Views )Dvoretzky's theorem tells us that if we put an arbitrary norm on n-dimensional Euclidean space, no matter what that normed space is like, if we pass to subspaces of dimension about log(n), the space looks pretty much Euclidean. A related measure-theoretic phenomenon has long been observed: the (one-dimensional) marginals of many natural high-dimensional probability distributions look about Gaussian. A question which had received little attention until recently is whether this phenomenon persists for k-dimensional marginals for k growing with n, and if so, for how large a k? In this talk I will discuss recent work showing that the phenomenon does indeed persist if k less than 2log(n)/log(log(n)), and that this bound is sharp (even the 2!).
Swee Hong Chan : Random walks with local memory
- Probability ( 195 Views )In this talk we consider this question for a family of random walks on the square lattice. When the randomness is turned to the maximum, we have the symmetric random walk, which is known to scale to a planar Brownian motion. When the randomness is turned to zero, we have the rotor walk, for which its scaling limit is an open problem. This talk is about random walks that lie in between these two extreme cases and for which we can prove their scaling limit. This is a joint work with Lila Greco, Lionel Levine, and Boyao Li.
Yu-ting Chen : Mean-field diffusions in stochastic spatial death-birth models.
- Probability ( 169 Views )In this talk, I will discuss a generalized Moran process from the evolutionary game theory. The generalization incorporates arrangement of by graphs and games among individuals. For these additional features, there has been consistent interest in using general spatial structure as a way to explain the ubiquitous game behavior in biological evolutions; the introduction of games leads to technical complications as basic as nonlinearity and asymmetry in the model. The talk will be centered around a seminal finding in the evolutionary game theory that was obtained more than a decade ago. By an advanced mean-field method, it reduces the infinite-dimensional problem of solving for the game fixation probabilities to a one-dimensional diffusion problem in the limit of a large population. The recent mathematical results and some related mathematical methods will be explained.
Ivan Corwin : Brownian Gibbs line ensembles.
- Probability ( 167 Views )The Airy line ensemble arises in scaling limits of growth models, directed polymers, random matrix theory, tiling problems and non-intersecting line ensembles. This talk will mainly focus on the "non-intersecting Brownian Gibbs property" for this infinite ensemble of lines. Roughly speaking, the measure on lines is invariant under resampling a given curve on an interval according to a Brownian Bridge conditioned to not intersect the above of below labeled curves. This property leads to the proof of a number of previously conjectured results about the top line of this ensemble. We will also briefly touch on the KPZ line ensemble, which arises as the scaling limit of a diffusion defined by the Doob-h transform of the quantum Toda lattice Hamiltonian. The top labeled curve of this KPZ ensemble is the fixed time solution to the famous Kardar-Parisi-Zhang stochastic PDE. This line ensemble has a "softer" Brownian Gibbs property in which resampled Brownian Bridges may cross the lines above and below, but at exponential energetic cost. This is based on joint work with Alan Hammond.
Daniel Sanz-Alonso : Bayes as Optimization
- Probability ( 165 Views )In this talk I will revisit the idea of viewing the Bayesian update as a variational problem. I will show how the variational interpretation is helpful in establishing the convergence of Bayesian models, and in defining and analysing diffusion processes that have the posterior as invariant measure. I will illustrate the former by proving a consistency result for graph-based Bayesian semi-supervised learning in the large unlabelled data-set regime, and the latter by suggesting new optimality criteria for the choice of metric in Riemannian MCMC.
David Nualart : Regularity of the density of the stochastic heat equation
- Probability ( 165 Views )In this talk we present a recent result on the smoothness of the density for the solution of a semilinear heat equation with multiplicative space-time Gaussian white noise. We assume that the coefficients are smooth and the diffusion coefficient is not identically zero at the initial time. The proof of this result is based on the techniques of the Malliavin calculus, and the existence of negative moments for the solution of a linear heat equation with multiplicative space-time white noise.