Measure-Theoretic Dvoretzky Theorem and Applications to Data Science
- Probability,Uploaded Videos ( 1451 Views )SEPC 2021 in honor of Elizabeth Meckes. Slides from the talks and more information are available <a href="https://services.math.duke.edu/~rtd/SEPC2021/SEPC2021.html">at this link (here).</a>
Oliver Tough : The Fleming-Viot Particle System with McKean-Vlasov dynamics
- Probability,Uploaded Videos ( 1332 Views )Quasi-Stationary Distributions (QSDs) describe the long-time behaviour of killed Markov processes. The Fleming-Viot particle system provides a particle representation for the QSD of a Markov process killed upon contact with the boundary of its domain. Whereas previous work has dealt with killed Markov processes, we consider killed McKean-Vlasov processes. We show that the Fleming-Viot particle system with McKean-Vlasov dynamics provides a particle representation for the corresponding QSDs. Joint work with James Nolen.
Zoe Huang : Motion by mean curvature in interacting particle systems
- Probability,Uploaded Videos ( 1254 Views )There are a number of situations in which rescaled interacting particle systems have been shown to converge to a reaction diffusion equation (RDE) with a bistable reaction term. These RDEs have traveling wave solutions. When the speed of the wave is nonzero, block constructions have been used to prove the existence or nonexistence of nontrivial stationary distributions. Here, we follow the approach in a paper by Etheridge, Freeman, and Pennington to show that in a wide variety of examples when the RDE limit has a bistable reaction term and traveling waves have speed 0, one can run time faster and further rescale space to obtain convergence to motion by mean curvature. This opens up the possibility of proving that the sexual reproduction model with fast stirring has a discontinuous phase transition, and that in Region 2 of the phase diagram for the nonlinear voter model studied by Molofsky et al there were two nontrivial stationary distributions.
Alex Hening : Stochastic persistence and extinction
- Probability,Uploaded Videos ( 1224 Views )A key question in population biology is understanding the conditions under which the species of an ecosystem persist or go extinct. Theoretical and empirical studies have shown that persistence can be facilitated or negated by both biotic interactions and environmental fluctuations. We study the dynamics of n interacting species that live in a stochastic environment. Our models are described by n dimensional piecewise deterministic Markov processes. These are processes (X(t), r(t)) where the vector X denotes the density of the n species and r(t) is a finite state space process which keeps track of the environment. In any fixed environment the process follows the flow given by a system of ordinary differential equations. The randomness comes from the changes or switches in the environment, which happen at random times. We give sharp conditions under which the populations persist as well as conditions under which some populations go extinct exponentially fast. As an example we look at the competitive exclusion principle from ecology, which says in its simplest form that two species competing for one resource cannot coexist, and show how the random switching can facilitate coexistence.
Max Xu : Random multiplicative functions and applications
- Probability ( 262 Views )Random multiplicative functions are probabilistic models for multiplicative arithmetic functions, such as Dirichlet characters or the Liouville function. In this talk, I will first quickly give an overview of the area, and then focus on some of the recent works on proving central limit theorems, connections to additive combinatorics, as well as some other deterministic applications. Part of the talk is based on joint work with Soundararajan, with Harper and Soundararajan (in progress) and with Angelo and Soundararajan (in progress).
Didong Li : Learning & Exploiting Low-Dimensional Structure in High-Dimensional Data
- Probability ( 240 Views )Data lying in a high dimensional ambient space are commonly thought to have a much lower intrinsic dimension. In particular, the data may be concentrated near a lower-dimensional subspace or manifold. There is an immense literature focused on approximating the unknown subspace and the unknown density, and exploiting such approximations in clustering, data compression, and building of predictive models. Most of the literature relies on approximating subspaces and densities using a locally linear, and potentially multiscale, dictionary with Gaussian kernels. In this talk, we propose a simple and general alternative, which instead uses pieces of spheres, or spherelets, to locally approximate the unknown subspace. I will also introduce a curved kernel called the Fisher–Gaussian (FG) kernel which outperforms multivariate Gaussians in many cases. Theory is developed showing that spherelets can produce lower covering numbers and mean square errors for many manifolds, as well as the posterior consistency of the Dirichlet process mixture of the FG kernels. Time permitting, I will also talk about an ongoing project about stochastic differential geometry.
Stanislav Molchanov : On the random analytic functions
- Probability ( 230 Views )The talk will contain a review of several recent results on the analytic continuation of the random analytic functions. We will start from the classical theorem on the random Taylor series (going to Borel s school), but the main subject will be the random zeta function (which was introduced implicitly by Cramer) and its generalizations. We will show that true primes are not truly random , since zeta functions for the random pseudo-primes (in the spirit of Cramer) have no analytic continuation through the critical line Re (z) = 1/2.
Firas Rassoul-Agha : On the almost-sure invariance principle for random walk in random environment
- Probability ( 210 Views )Consider a crystal formed of two types of atoms placed at the nodes of the integer lattice. The type of each atom is chosen at random, but the crystal is statistically shift-invariant. Consider next an electron hopping from atom to atom. This electron performs a random walk on the integer lattice with randomly chosen transition probabilities (since the configuration seen by the electron is different at each lattice site). This process is highly non-Markovian, due to the interaction between the walk and the environment. We will present a martingale approach to proving the invariance principle (i.e. Gaussian fluctuations from the mean) for (irreversible) Markov chains and show how this can be transferred to a result for the above process (called random walk in random environment). This is joint work with Timo Sepp\"al\"ainen.
Hao Shen : Stochastic PDEs and regularity structures
- Probability ( 207 Views )In this talk I will review the basic ideas of the regularity structure theory developed by Martin Hairer, as well as its applications to stochastic PDE problems. I will then discuss my joint work with Hairer on the sine-Gordon equation and central limit theorems for stochastic PDEs.
Robin PEMANTLE : Zeros of random analytic functions and their derivatives
- Probability ( 207 Views )I will discuss a series of results concerning the effect of the derivative operator on the locations of the zeros of a random analytic function. Two models are considered. In the first, the zeros are chosen IID from some measure on the complex plane. In the second, the zeros are chosen to be a Poisson point process on the real line. Repeated differentiation results in a nearly deterministic zero set.
Laurie Field : Relating variants of SLE using the Brownian loop measure
- Probability ( 205 Views )In this talk I will discuss a framework for transforming one variant of the SchrammLoewner evolution (SLE) into another. The main tool in this approach is the Brownian loop measure. A simple case is to relate the reversal of radial SLE to whole-plane SLE, which looks the same locally. Writing the formula one might naïvely expect fails, because the loop measure term is infinite. In joint work with Greg Lawler, we show that there is a finite normalized version of the loop measure term, and that with this change, the naïve formula relating the two SLEs becomes correct.
F. Baudoin : Functional Inequalities: Probability and geometry in interaction
- Probability ( 202 Views )The talk will be an introduction to the world of functional inequalities with a geometric content. I will in particular focus on the family of log-Sobolev and Sobolev inequalities and show how these inequalities are closely connected to the geometry of the ambient space. I will mainly follow the Bakry-Ledoux approach to these inequalities which is is based on the notion of intrinsic curvature of a diffusion operator and at the end of the presentation will explain how these ideas have recently been used in sub-Riemannian geometry.
Antonio Auffinger : The Parisi Formula: duality and equivalence of ensembles.
- Probability ( 200 Views )In 1979, G. Parisi predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington-Kirkpatrick model and described the role played by its minimizer, called the Parisi measure. This remarkable formula was proven by Talagrand in 2006. In this talk I will explain a new representation of the Parisi functional that finally connects the temperature parameter and the Parisi measure as dual parameters. Based on joint-works with Wei-Kuo Chen.
Erika Berenice Roldan Roa : Asymptotic behavior of the homology of random polyominoes
- Probability ( 197 Views )In this talk we study the rate of growth of the expectation of the number of holes (the rank of the first homology group) in a polyomino with uniform and percolation distributions. We prove the existence of linear bounds for the expected number of holes of a polyomino with respect to both the uniform and percolation distributions. Furthermore, we exhibit particular constants for the upper and lower bounds in the uniform distribution case. This results can be extend, using the same techniques, to other polyforms and higher dimensions.
Swee Hong Chan : Random walks with local memory
- Probability ( 195 Views )In this talk we consider this question for a family of random walks on the square lattice. When the randomness is turned to the maximum, we have the symmetric random walk, which is known to scale to a planar Brownian motion. When the randomness is turned to zero, we have the rotor walk, for which its scaling limit is an open problem. This talk is about random walks that lie in between these two extreme cases and for which we can prove their scaling limit. This is a joint work with Lila Greco, Lionel Levine, and Boyao Li.
David Andeerson : Stochastic models of biochemical reaction systems
- Probability ( 182 Views )I will present a tutorial on the mathematical models utilized in molecular biology. I will begin with an introduction to the usual stochastic and deterministic models, and then introduce terminology and results from chemical reaction network theory. I will end by presenting the deficiency zero theorem in both the deterministic and stochastic settings.
Yu-ting Chen : Mean-field diffusions in stochastic spatial death-birth models.
- Probability ( 169 Views )In this talk, I will discuss a generalized Moran process from the evolutionary game theory. The generalization incorporates arrangement of by graphs and games among individuals. For these additional features, there has been consistent interest in using general spatial structure as a way to explain the ubiquitous game behavior in biological evolutions; the introduction of games leads to technical complications as basic as nonlinearity and asymmetry in the model. The talk will be centered around a seminal finding in the evolutionary game theory that was obtained more than a decade ago. By an advanced mean-field method, it reduces the infinite-dimensional problem of solving for the game fixation probabilities to a one-dimensional diffusion problem in the limit of a large population. The recent mathematical results and some related mathematical methods will be explained.
Ivan Corwin : Brownian Gibbs line ensembles.
- Probability ( 167 Views )The Airy line ensemble arises in scaling limits of growth models, directed polymers, random matrix theory, tiling problems and non-intersecting line ensembles. This talk will mainly focus on the "non-intersecting Brownian Gibbs property" for this infinite ensemble of lines. Roughly speaking, the measure on lines is invariant under resampling a given curve on an interval according to a Brownian Bridge conditioned to not intersect the above of below labeled curves. This property leads to the proof of a number of previously conjectured results about the top line of this ensemble. We will also briefly touch on the KPZ line ensemble, which arises as the scaling limit of a diffusion defined by the Doob-h transform of the quantum Toda lattice Hamiltonian. The top labeled curve of this KPZ ensemble is the fixed time solution to the famous Kardar-Parisi-Zhang stochastic PDE. This line ensemble has a "softer" Brownian Gibbs property in which resampled Brownian Bridges may cross the lines above and below, but at exponential energetic cost. This is based on joint work with Alan Hammond.
David Nualart : Regularity of the density of the stochastic heat equation
- Probability ( 165 Views )In this talk we present a recent result on the smoothness of the density for the solution of a semilinear heat equation with multiplicative space-time Gaussian white noise. We assume that the coefficients are smooth and the diffusion coefficient is not identically zero at the initial time. The proof of this result is based on the techniques of the Malliavin calculus, and the existence of negative moments for the solution of a linear heat equation with multiplicative space-time white noise.
James Gleeson : Determinants of meme popularity
- Probability ( 151 Views )We will describe and analyze some models of the spread of information on Twitter. The competition between memes fro the limited resource of user attention leads to critical branching processes, and resulting heavy tailed distributions for meme popularity.
Davar Khoshnevisan : Nonlinear Stochastic Heat Equations: Existence, Growth, and Intermittency
- Probability ( 150 Views )We introduce some recent advances in the study of nonlinear stochastic heat equations, and related stochastic PDEs. Special attention will be paid to the local structure of the solution. In particular, we show that, frequently, the solution exhibits a form of intermittency. Time permitting, we discuss related connections to classical potential theory and mathematical physics as well.
Zachary Bezemek : Interacting particle systems in multiscale environments: asymptotic analysis
- Probability ( 138 Views )This talk is an overview of my thesis work, which consists of 3 projects exploring the effect of multiscale structure on a class of interacting particle systems called weakly interacting diffusions. In the absence of multiscale structure, we have a collection of N particles, with the dynamics of each being described by the solution to a stochastic differential equation (SDE) whose coefficients depend on that particle's state and the empirical measure of the full particle configuration. It is well known in this setting that as N approaches infinity, the particle system undergoes the ``propagation of chaos,'' and its corresponding sequence of empirical measures converges to the law of the solution to an associated McKean-Vlasov SDE. Meanwhile, in our multiscale setting, the coefficients of the SDEs may also depend on a process evolving on a timescale of order 1/\epsilon faster than the particles. As \epsilon approaches 0, the effect of the fast process on the particles' dynamics becomes deterministic via stochastic homogenization. We study the interplay between homogenization and the propagation of chaos via establishing large deviations and moderate deviations results for the multiscale particles' empirical measure in the combined limit as N approaches infinity and \epsilon approaches 0. Along the way, we derive rates of homogenization for slow-fast McKean-Vlasov SDEs.
Pascal Maillard : Interval fragmentations with choice
- Probability ( 132 Views )Points fall into the unit interval according to a certain rule, splitting it up into fragments. An example rule is the following: at each step, two points are randomly drawn from the unit interval and the one that falls into the smaller (or larger) interval is discarded, while the other one is kept. This process is inspired by the so-called "power of choice" paradigm originating in the computer science literature on balanced load allocation models. The question of interest is how much the rule affects the geometry of the point cloud. With Elliot Paquette [1] we introduced a general version of this interval fragmentation model and showed that the empirical distribution of rescaled interval lengths converges almost surely to a deterministic probability measure. I will report on this work as well as on work in progress [2] where we show that the empirical measure of the points converges almost surely to the uniform distribution. The proofs involve techniques from stochastic approximation, non-linear integro-differential equations, ergodic theory for Markov processes and perturbations of semigroups on L^p spaces, amongst other things. [1] Maillard, P., & Paquette, E. (2016). Choices and intervals. Israel Journal of Mathematics, 212(1), 337384. [2] Maillard, P., & Paquette, E. (in preparation). Interval fragmentations with choice: equidistribution and the evolution of tagged fragments
Kevin McGoff : An introduction to thermodynamic formalism in ergodic theory through (counter)examples
- Probability ( 129 Views )The goal of this talk is to give a self-contained introduction to some aspects of the thermodynamic formalism in ergodic theory that should be accessible to probabilists. In particular, the talk will focus on equilibrium states and Gibbs measures on the Z^d lattice. We'll present some basic examples in the theory, as well as some recent results that are joint with Christopher Hoffman.
Rick Durrett : Genealogies in growing sold tumors
- Probability ( 125 Views )Over the past decade, the theory of tumor evolution has largely focused on the selective sweeps model. According to this theory, tumors evolve by a succession of clonal expansions that are initiated by driver mutations. In a 2015 paper, Sottoriva et al collected genetic data of various types from 349 individual tumor glands were sampled from the opposite sides of 15 colorectal tumors and large adenomas. Based on this the authors proposed an alternative theory of tumor evolution, the so-called {\bf Big Bang model}, in which one or more driver mutations are acquired by the founder gland, and the evolutionary dynamics within the expanding population are predominantly neutral. In this talk we will describe a simple mathematical model that reproduces the observed phenomena and makes quantitative predictions.