Quicklists
public 01:44:53

Shankar Bhamidi : Flows, first passage percolation and random disorder in networks

  -   Probability ( 220 Views )

Consider a connected network and suppose each edge in the network has a random positive edge weight. Understanding the structure and weight of the shortest path between nodes in the network is one of the most fundamental problems studied in modern probability theory and goes under the name first passage percolation. It arises as a fundamental building block in many interacting particle system models such as the spread of epidemics on networks. To a large extent such problems have been only studied in the context of the n-dimensional lattice. In the modern context these problems take on an additional significance with the minimal weight measuring the cost of sending information while the number of edges on the optimal path (hopcount) representing the actual time for messages to get between vertices in the network. Given general models of random graphs with random edge costs, can one develop techniques to analyze asymptotics of functionals of interest which are robust to the model formulation? The aim of this talk is to describe a heuristic based on continuous time branching processes which gives very easily, a wide array of asymptotic results for random network models in terms of the Malthusian rate of growth and the stable age distribution of associated branching process. These techniques allow us to solve not only first passage percolation problems rigorously but also understand functionals such as the degree distribution of shortest path trees, congestion across edges as well as asymptotics for “betweeness centrality” a concept of crucial interest in social networks, in terms of Cox processes and extreme value distributions. These techniques also allow one to exactly solve models of “weak disorder” in the context of the stochastic mean field model of distance, a model of great interest in probabilistic combinatorial optimization.

public 01:34:43

Johan Brauer : The Stabilisation of Equilibria in Evolutionary Game Dynamics through Mutation

  -   Probability ( 208 Views )

The multi-population replicator dynamics (RD) can be considered a dynamic approach to the study of multi-player games, where it was shown to be related to Cross-learning, as well as of systems of co-evolving populations. However, not all of its equilibria are Nash equilibria (NE) of the underlying game, and neither convergence to an NE nor convergence in general are guaranteed. Although interior equilibria are guaranteed to be NE, no interior equilibrium can be asymptotically stable in the multi-population RD, resulting, e.g., in cyclic orbits around a single interior NE. We report on our investigation of a new notion of equilibria of RD, called mutation limits, which is based on the inclusion of a naturally arising, simple form of mutation, but is invariant under the specific choice of mutation parameters. We prove the existence of such mutation limits for a large range of games, and consider an interesting subclass, that of attracting mutation limits. Attracting mutation limits are approximated by asymptotically stable equilibria of the (mutation-)perturbed RD, and hence, offer an approximate dynamic solution of the underlying game, especially if the original dynamic has no asymptotically stable equilibria. Therefore, the presence of mutation will indeed stabilise the system in certain cases and make attracting mutation limits near-attainable. Furthermore, the relevance of attracting mutation limits as a game theoretic equilibrium concept is emphasised by the relation of (mutation-)perturbed RD to the Q-learning algorithm in the context of multi-agent reinforcement learning. However, in contrast to the guaranteed existence of mutation limits, attracting mutation limits do not exist in all games, raising the question of their characterization.