Oliver Tough : The Fleming-Viot Particle System with McKean-Vlasov dynamics
- Probability,Uploaded Videos ( 1332 Views )Quasi-Stationary Distributions (QSDs) describe the long-time behaviour of killed Markov processes. The Fleming-Viot particle system provides a particle representation for the QSD of a Markov process killed upon contact with the boundary of its domain. Whereas previous work has dealt with killed Markov processes, we consider killed McKean-Vlasov processes. We show that the Fleming-Viot particle system with McKean-Vlasov dynamics provides a particle representation for the corresponding QSDs. Joint work with James Nolen.
Zoe Huang : Motion by mean curvature in interacting particle systems
- Probability,Uploaded Videos ( 1254 Views )There are a number of situations in which rescaled interacting particle systems have been shown to converge to a reaction diffusion equation (RDE) with a bistable reaction term. These RDEs have traveling wave solutions. When the speed of the wave is nonzero, block constructions have been used to prove the existence or nonexistence of nontrivial stationary distributions. Here, we follow the approach in a paper by Etheridge, Freeman, and Pennington to show that in a wide variety of examples when the RDE limit has a bistable reaction term and traveling waves have speed 0, one can run time faster and further rescale space to obtain convergence to motion by mean curvature. This opens up the possibility of proving that the sexual reproduction model with fast stirring has a discontinuous phase transition, and that in Region 2 of the phase diagram for the nonlinear voter model studied by Molofsky et al there were two nontrivial stationary distributions.
Alex Hening : Stochastic persistence and extinction
- Probability,Uploaded Videos ( 1224 Views )A key question in population biology is understanding the conditions under which the species of an ecosystem persist or go extinct. Theoretical and empirical studies have shown that persistence can be facilitated or negated by both biotic interactions and environmental fluctuations. We study the dynamics of n interacting species that live in a stochastic environment. Our models are described by n dimensional piecewise deterministic Markov processes. These are processes (X(t), r(t)) where the vector X denotes the density of the n species and r(t) is a finite state space process which keeps track of the environment. In any fixed environment the process follows the flow given by a system of ordinary differential equations. The randomness comes from the changes or switches in the environment, which happen at random times. We give sharp conditions under which the populations persist as well as conditions under which some populations go extinct exponentially fast. As an example we look at the competitive exclusion principle from ecology, which says in its simplest form that two species competing for one resource cannot coexist, and show how the random switching can facilitate coexistence.
David Aldous: Probability Seminar
- Probability,Uploaded Videos ( 649 Views )David Aldous, Probability Seminar Sept 30, 2021 TITLE: Can one prove existence of an infectiousness threshold (for a pandemic) in very general models of disease spread? ABSTRACT: Intuitively, in any kind of disease transmission model with an infectiousness parameter, there should exist a critical value of the parameter separating a very likely from a very unlikely resulting pandemic. But even formulating a general conjecture is challenging. In the most simplistic model (SI) of transmission, one can prove this for an essentially arbitrary large weighted contact network. The proof for SI depends on a simple lemma concerning hitting times for increasing set-valued Markov processes. Can one extend to SIR or SIS models over similarly general networks, where the lemma is no longer applicable?
Nayantara Bhatnagar : Subsequence Statistics in Random Mallows Permutations
- Probability ( 258 Views )The longest increasing subsequence (LIS) of a uniformly random permutation is a well studied problem. Vershik-Kerov and Logan-Shepp first showed that asymptotically the typical length of the LIS is 2sqrt(n). This line of research culminated in the work of Baik-Deift-Johansson who related this length to the GUE Tracy-Widom distribution. We study the length of the LIS of random permutations drawn from the Mallows measure, introduced by Mallows in connection with ranking problems in statistics. We prove limit theorems for the LIS for different regimes of the parameter of the distribution. I will also describe some recent results on the longest common subsequence of independent Mallows permutations. Relevant background for the talk will be introduced as needed. Based on work with Ron Peled, Riddhi Basu and Ke Jin.
Li-Cheng Tsai : Interacting particle systems with moving boundaries
- Probability ( 218 Views )In this talk I will go over two examples of one-dimensional interacting particle systems: Aldous' up-the-river problem, and a modified Diffusion Limited Growth. I will explain how these systems connect to certain PDE problems with boundaries. For the up-the-river problem this connection helps to solve Aldous conjecture regarding an optimal strategy. For the modified DLA, this connection helps to characterize the scaling exponent and scaling limit of the boundary at the critical density. This talk is based on joint work with Amir Dembo and Wenpin Tang.
David Sivakoff : Nucleation scaling in jigsaw percolation
- Probability ( 203 Views )Jigsaw percolation is a nonlocal process that iteratively merges elements of a partition of the vertices in a deterministic puzzle graph according to the connectivity properties of a random collaboration graph. We assume the collaboration graph is an Erdos-Renyi graph with edge probability p, and investigate the probability that the puzzle graph is solved, that is, that the process eventually produces the partition {V}. In some generality, for puzzle graphs with N vertices of degrees about D, this probability is close to 1 or 0 depending on whether pD(log N) is large or small. We give more detailed results for the one dimensional cycle and two dimensional torus puzzle graphs, where in many instances we can prove sharp phase transitions.
F. Baudoin : Functional Inequalities: Probability and geometry in interaction
- Probability ( 202 Views )The talk will be an introduction to the world of functional inequalities with a geometric content. I will in particular focus on the family of log-Sobolev and Sobolev inequalities and show how these inequalities are closely connected to the geometry of the ambient space. I will mainly follow the Bakry-Ledoux approach to these inequalities which is is based on the notion of intrinsic curvature of a diffusion operator and at the end of the presentation will explain how these ideas have recently been used in sub-Riemannian geometry.
Brian Rider : Log-gases and Tracy-Widom laws
- Probability ( 201 Views )The now ubiquitous Tracy-Widom laws were first discovered in the context of the Gaussian Orthogonal, Unitary, and Symplectic Ensembles (G{O/U/S}E) of random matrix theory. The latter may be viewed as logarithmic gases with quadratic (Gaussian) potential at three special inverses temperatures (beta=1,2,4). A few years back, Jose Ramirez, Balint Virag, and I showed that that one obtains generalizations of the Tracy-Widom laws at all inverse temperatures (beta>0), though still for quadratic potentials. I'll explain how similar ideas (and considerably more labor) extends the result to general potential, general temperature log-gases. This is joint work with Manjunath Krishnapur and Balint Virag.
Erika Berenice Roldan Roa : Asymptotic behavior of the homology of random polyominoes
- Probability ( 197 Views )In this talk we study the rate of growth of the expectation of the number of holes (the rank of the first homology group) in a polyomino with uniform and percolation distributions. We prove the existence of linear bounds for the expected number of holes of a polyomino with respect to both the uniform and percolation distributions. Furthermore, we exhibit particular constants for the upper and lower bounds in the uniform distribution case. This results can be extend, using the same techniques, to other polyforms and higher dimensions.
Swee Hong Chan : Random walks with local memory
- Probability ( 195 Views )In this talk we consider this question for a family of random walks on the square lattice. When the randomness is turned to the maximum, we have the symmetric random walk, which is known to scale to a planar Brownian motion. When the randomness is turned to zero, we have the rotor walk, for which its scaling limit is an open problem. This talk is about random walks that lie in between these two extreme cases and for which we can prove their scaling limit. This is a joint work with Lila Greco, Lionel Levine, and Boyao Li.
David Herzog : Hypocoercivity for Langevin dynamics
- Probability ( 168 Views )This will be the last in his sequence of an introductory lecture on Hypocoercivity for Langevin dynamics. For those who have not attended the previous lectures and are familiar with Langevin dynamics, the talk should be accessible. We will continue our discussion on convergence to equilibrium for second-order Langevin dynamics using the Poincare approach. We'll recap convergence in H^1(\mu) and then we'll talk about the direct L^2(\mu) method of Dolbeault, Mouhot, and Schmeiser, also called the DMS approach.
Kavita Ramanan : Beyond Mean-Field Limits: Local Dynamics on Sparse Graphs
- Probability ( 160 Views )Many applications can be modeled as a large system of homogeneous interacting particles on a graph in which the infinitesimal evolution of each particle depends on its own state and the empirical distribution of the states of neighboring particles. When the graph is a clique, it is well known that the dynamics of a typical particle converges in the limit, as the number of vertices goes to infinity, to a nonlinear Markov process, often referred to as the McKean-Vlasov or mean-field limit. In this talk, we focus on the complementary case of scaling limits of dynamics on certain sequences of sparse graphs, including regular trees and sparse Erdos-Renyi graphs, and obtain a novel characterization of the dynamics of the neighborhood of a typical particle.
David Sivakoff : Random Site Subgraphs of the Hamming Torus
- Probability ( 159 Views )The critical threshold for the emergence of a giant component in the random site subgraph of a d-dimensional Hamming torus is given by the positive root of a polynomial. This value is distinct from the critical threshold for the random edge subgraph of the Hamming torus. The proof uses an intuitive application of multitype branching processes.
Mark Huber : Conditions for Parallel and Simulated Tempering to be fast or slow
- Probability ( 154 Views )In Markov chain Monte Carlo, a Markov chain is constructed whose limiting distribution is equal to some target distribution. While it is easy to build such chains, for some distributions the standard constructions can take exponentially long to come near that limit, making the chain torpidly mixing. When the limit is reached in polynomial time, the chain is rapidly mixing. Tempering is a technique designed to speed up the convergence of Markov chains by adding an extra temperature parameter that acts to smooth out the target distribution. In this talk I will present joint work with Dawn Woodard (Cornell) and Scott Schmidler (Duke) that give sufficient conditions for a tempering chain to be torpidly mixing, and a related (but different) set of conditions for the chain to be rapidly mixing.
James Johndrow : Error Bounds for Approximations of Markov Chains
- Probability ( 140 Views )We give results on the properties of Markov kernels that approximate another Markov kernel. The basic idea is that when the original kernel satisfies a contraction condition in some metric, the long-time dynamics of the two chains -- as well as the invariant measures, when they exist -- will be close in that metric, so long as the approximating kernel satisfies a suitable approximation error condition. We focus on weighted total variation and Wasserstein metrics, and motivate the results with applications to scalable Markov chain Monte Carlo algorithms. This is joint work with Jonathan Mattingly.
Mokshay Madiman : A Shannon-McMillan-Breiman theorem for log-concave measures and applications in convex geometry
- Probability ( 132 Views )Our primary goal is to describe a strong quantitative form of the Shannon-McMillan-Breiman theorem for log-concave probability measures on linear spaces, even in the absence of stationarity. The main technical result is a concentration of measure inequality for the ``information content'' of certain random vectors. We will also briefly discuss implications. In particular, by combining this concentration result with ideas from information theory and convex geometry, we obtain a reverse entropy power inequality for convex measures that generalizes the reverse Brunn-Minkowski inequality of V. Milman. Along the way, we also develop a new information-theoretic formulation of Bourgain's hyperplane conjecture, as well as some Gaussian comparison inequalities for the entropy of log-concave probability measures. This is joint work with Sergey Bobkov (Minnesota).
Pascal Maillard : Interval fragmentations with choice
- Probability ( 132 Views )Points fall into the unit interval according to a certain rule, splitting it up into fragments. An example rule is the following: at each step, two points are randomly drawn from the unit interval and the one that falls into the smaller (or larger) interval is discarded, while the other one is kept. This process is inspired by the so-called "power of choice" paradigm originating in the computer science literature on balanced load allocation models. The question of interest is how much the rule affects the geometry of the point cloud. With Elliot Paquette [1] we introduced a general version of this interval fragmentation model and showed that the empirical distribution of rescaled interval lengths converges almost surely to a deterministic probability measure. I will report on this work as well as on work in progress [2] where we show that the empirical measure of the points converges almost surely to the uniform distribution. The proofs involve techniques from stochastic approximation, non-linear integro-differential equations, ergodic theory for Markov processes and perturbations of semigroups on L^p spaces, amongst other things. [1] Maillard, P., & Paquette, E. (2016). Choices and intervals. Israel Journal of Mathematics, 212(1), 337384. [2] Maillard, P., & Paquette, E. (in preparation). Interval fragmentations with choice: equidistribution and the evolution of tagged fragments
Leonid Bogachev : Gaussian fluctuations for Plancherel partitions
- Probability ( 128 Views )The limit shape of Young diagrams under the Plancherel measure was found by Vershik & Kerov (1977) and Logan & Shepp (1977). We obtain a central limit theorem for fluctuations of Young diagrams in the bulk of the partition 'spectrum'. More specifically, under a suitable (logarithmic) normalization, the corresponding random process converges (in the FDD sense) to a Gaussian process with independent values. We also discuss a link with an earlier result by Kerov (1993) on the convergence to a generalized Gaussian process. The proof is based on poissonization of the Plancherel measure and an application of a general central limit theorem for determinantal point processes. (Joint work with Zhonggen Su.) (see more details hear.
Richard Bass : Uniqueness in law for parabolic SPDEs and infinite dimensional SDEs
- Probability ( 124 Views )We consider the heat equation on an interval with heat being introduced according to a random mechanism. When the random mechanism is space-time white noise, this equation has been much studied. We look at the case where the white noise is modified by a function A(u)(x) of the current temperatures u and where A is H\"older continuous as a function of u. Unlike other work along these lines, A(u)(x) can depend on the temperatures throughout the interval. Our method involves looking at the Fourier coefficients, which leads to an infinite dimensional system of stochastic differential equations. This is joint work with Ed Perkins.
Wesley Pegden : The fractal nature of the Abelian Sandpile
- Probability ( 124 Views )The Abelian Sandpile is a simple diffusion process on the integer lattice, in which configurations of chips disperse according to a simple rule: when a vertex has at least 4 chips, it can distribute one chip to each neighbor. Introduced in the statistical physics community in the 1980s, the Abelian sandpile exhibits striking fractal behavior which long resisted rigorous mathematical analysis (or even a plausible explanation). We now have a relatively robust mathematical understanding of this fractal nature of the sandpile, which involves surprising connections between integer superharmonic functions on the lattice, discrete tilings of the plane, and Apollonian circle packings. In this talk, we will survey our work in this area, and discuss avenues of current and future research.
Joe Jackson : The convergence problem in mean field control
- Probability ( 123 Views )This talk will be about the convergence problem in mean field control (MFC), i.e. the challenge of rigorously justifying the convergence of certain "symmetric" $N$-particle stochastic control problems towards their mean field counterparts. On the one hand, this convergence problem is already well-understood from a qualitative perspective, thanks to powerful probabilistic techniques based on compactness. On the other hand, quantitative results (i.e. rates of convergence) are more difficult to obtain, in large part because the value function of the mean field problem (which is also the solution to a certain Hamilton-Jacobi equation on the Wasserstein space) may fail to be $C^1$, even if all the data is smooth. After giving an overview of the convergence problem, I will discuss the results of two recent joint works with Cardaliaguet, Daudin, Delarue, and Souganidis, in which we use some ideas from the theory of viscosity solutions to overcome this lack of regularity and obtain rates of convergence of the $N$-particle value functions towards the value function of the corresponding MFC problem.
Davar Khoshnevisan : A macroscopic multifractal analysis of parabolic stochastic PDEs
- Probability ( 123 Views )We will show that the solutions to a large family of stochastic PDEs that behave as the linear heat equation develop large-scale space-time peaks on infinitely-many different scales. We formalize this assertion by appealing to the Barlow-Taylor theory of macroscopic fractals. We will also present some earlier work on fixed-time results for comparison purposes. This talk is based on a paper and a work in progress with Kunwoo Kim (Technion) and Yimin Xiao (Michigan State University).
Peter Bubenik : Multivariate topological data analysis
- Probability ( 120 Views )I will present results on constructing an estimator of a function on a compact manifold for the purpose of recovering its "topology". What this means will be explained in detail. The talk will conclude with an application to brain imaging.
Tobias Johnson : Galton-Watson fixed points, tree automata, and interpretations
- Probability ( 117 Views )Consider a set of trees such that a tree belongs to the set if and only if at least two of its root child subtrees do. One example is the set of trees that contain an infinite binary tree starting at the root. Another example is the empty set. Are there any other sets satisfying this property other than trivial modifications of these? I'll demonstrate that the answer is no, in the sense that any other such set of trees differs from one of these by a negligible set under a Galton-Watson measure on trees, resolving an open question of Joel Spencer's. This follows from a theorem that allows us to answer questions of this sort in general. All of this is part of a bigger project to understand the logic of Galton-Watson trees, which I'll tell you more about. Joint work with Moumanti Podder and Fiona Skerman.
Rick Durrett : Evolutionary Games on the Torus
- Probability ( 117 Views )We study evolutionary games on the torus with N points in dimensions \(d\ge 3\) with matrices of the form \(\bar G = {\bf 1} + w G\), where 1 is a matrix that consists of all 1's, and w is small. We show that there are three weak selection regimes (i) \(w \gg N^{-2/d}\), (ii) \(N^{-2/d} \gg w \gg N^{-1}\), and (iii) there is a mutation rate \(\mu\) so that \(\mu \gg N^{-1}\) and \(\mu \gg w\) where in the last case we have introduced a mutation rate \(\mu\) to make it nontrivial. In the first and second regimes the rescaled process converges to a PDE and an ODE respectively. In the third, which is the classical weak selection regime of population genetics, we give a new derivation of Tarnita's formula which describes how the equilibrium frequencies are shifted away from uniform due to the spatial structure.
Louigi Addario-Berry : Slowdown of the front for branching Brownian motion with decay of mass
- Probability ( 112 Views )Consider a standard branching Brownian motion whose particles have varying mass. At time t, if a total mass m of particles have distance less than one from a fixed particle x, then the mass of particle x decays at rate m. The total mass increases via branching events: on branching, a particle of mass m creates two identical mass-m particles. One may define the front of this system as the point beyond which there is a total mass less than one (or beyond which the expected mass is less than one). This model possesses much less independence than standard BBM. Nonetheless, it is possible to prove that (in a rather weak sense) the front is at distance ~ c t^{1/3} behind the typical BBM front.
Leonid Petrov : Spectral theory for interacting particle systems
- Probability ( 111 Views )I plan to discuss spectral theory-type results for several stochastic interacting particle systems solvable by the coordinate Bethe ansatz. These results include Plancherel type isomorphism theorems which imply completeness and biorthogonality statements for the corresponding Bethe ansatz eigenfunctions. These constructions yield explicit solutions (in terms of multiple contour integrals) for backward and forward Kolmogorov equations with arbitrary initial data. Some of the formulas produced in this way are amenable to asymptotic analysis. In particular, I will discuss the (stochastic) q-Hahn zero-range process introduced recently by Povolotsky, and also the Asymmetric Simple Exclusion Process (ASEP). In particular, the spectral theory provides a new proof of the symmetrization identities of Tracy and Widom (for ASEP with either step or step Bernoulli initial configuration). Another degeneration takes the q-Hahn zero-range process to the stochastic q-Boson particle system dual to q-TASEP studied by Borodin, Corwin et al. Thus, at the spectral theory level we unify two discrete-space regularizations of the Kardar-Parisi-Zhang equation / stochastic heat equation, namely, q-TASEP and ASEP.