Quicklists
public 01:44:51

Ruth Williams : Control of Stochastic Processing Networks

  -   Probability ( 222 Views )

Stochastic processing networks (SPNs) are a significant generalization of conventional queueing networks that allow for flexible scheduling through dynamic sequencing and alternate routing. SPNs arise naturally in a variety of applications in operations management and their control and analysis present challenging mathematical problems. One approach to these problems, via approximate diffusion control problems, has been outlined by J. M. Harrison. Various aspects of this approach have been developed mathematically, including a reduction in dimension of the diffusion control problem. However, other aspects have been less explored, especially, solution of the diffusion control problem, derivation of policies by interpretating such solutions, and limit theorems that establish optimality of such policies in a suitable asymptotic sense. In this talk, for a concrete class of networks called parallel server systems which arise in service network and computer science applications, we explore previously undeveloped aspects of Harrison's scheme and illustrate the use of the approach in obtaining simple control policies that are nearly optimal. Identification of a graphical structure for the network, an invariance principle and properties of local times of reflecting Brownian motion, will feature in our analysis. The talk will conclude with a summary of the current status and description of open problems associated with the further development of control of stochastic processing networks. This talk will draw on aspects of joint work with M. Bramson, M. Reiman, W. Kang and V. Pesic.

public 01:34:53

Shankar Bhamidi : Two philosophies for random graphs and networks: Local weak convergence and scaling limits

  -   Probability ( 110 Views )

The last few years have witnessed an explosion in the number of mathematical models for random graphs and networks, as well as models for dynamics on these network models. In this context I would like to exhibit the power of two well known philosophies in attacking problems in random graphs and networks: First, local weak convergence: The idea of local neighborhoods of probabilistic discrete structures (such as random graphs) converging to the local neighborhood of limiting infinite objects has been known for a long time in the probability community and has proved to be remarkably effective in proving convergence results in many different situations. Here we shall give a wide range of examples of the above methodology. In particular, we shall show how the above methodology can be used to tackle problems of flows through random networks, where we have a random network with nodes communicating via least cost paths to other nodes. We shall show in some models on the completely connected network how the above methodology allows us to prove the convergence of the empirical distribution of edge flows, exhibiting how macroscopic order emerges from microscopic rules. Also, we shall show how for a wide variety of random trees (uniform random trees, preferential attachment trees arising from a wide variety of attachment schemes, models of trees from Statistical Physics etc) the above methodology shows the convergence of the spectral distribution of the adjacency matrix of theses trees to a limiting non random distribution function. Second, scaling limits: For the analysis of critical random graphs, one often finds that properly associated walks corresponding to the exploration of the graph encode a wide array of information (including the size of the maximal components). In this context we shall extend work of Aldous on Erdos-Renyi critical random graphs to the context of inhomogeneous random graph models. If time permits we shall describe the connection between these models and the multiplicative coalescent, arising from models of coagulation in the physical sciences.