Measure-Theoretic Dvoretzky Theorem and Applications to Data Science
- Probability,Uploaded Videos ( 1451 Views )SEPC 2021 in honor of Elizabeth Meckes. Slides from the talks and more information are available <a href="https://services.math.duke.edu/~rtd/SEPC2021/SEPC2021.html">at this link (here).</a>
Oliver Tough : The Fleming-Viot Particle System with McKean-Vlasov dynamics
- Probability,Uploaded Videos ( 1332 Views )Quasi-Stationary Distributions (QSDs) describe the long-time behaviour of killed Markov processes. The Fleming-Viot particle system provides a particle representation for the QSD of a Markov process killed upon contact with the boundary of its domain. Whereas previous work has dealt with killed Markov processes, we consider killed McKean-Vlasov processes. We show that the Fleming-Viot particle system with McKean-Vlasov dynamics provides a particle representation for the corresponding QSDs. Joint work with James Nolen.
Stanislav Molchanov : On the random analytic functions
- Probability ( 230 Views )The talk will contain a review of several recent results on the analytic continuation of the random analytic functions. We will start from the classical theorem on the random Taylor series (going to BorelÂ? s school), but the main subject will be the random zeta Â? function (which was introduced implicitly by Cramer) and its generalizations. We will show that Â?true primes are not truly random Â?, since zeta Â? functions for the random Â?pseudo-primesÂ? (in the spirit of Cramer) have no analytic continuation through the critical line Re (z) = 1/2.
Hendrik Weber : Convergence of the two-dimensional dynamic Ising-Kac model
- Probability ( 207 Views )The Ising-Kac model is a variant of the ferromagnetic Ising model in which each spin variable interacts with all spins in a neighbourhood of radius $\ga^{-1}$ for $\ga \ll1$ around its base point. We study the Glauber dynamics for this model on a discrete two-dimensional torus $\Z^2/ (2N+1)\Z^2$, for a system size $N \gg \ga^{-1}$ and for an inverse temperature close to the critical value of the mean field model. We show that the suitably rescaled coarse-grained spin field converges in distribution to the solution of a non-linear stochastic partial differential equation. This equation is the dynamic version of the $\Phi^4_2$ quantum field theory, which is formally given by a reaction diffusion equation driven by an additive space-time white noise. It is well-known that in two spatial dimensions, such equations are distribution valued and a \textit{Wick renormalisation} has to be performed in order to define the non-linear term. Formally, this renormalisation corresponds to adding an infinite mass term to the equation. We show that this need for renormalisation for the limiting equation is reflected in the discrete system by a shift of the critical temperature away from its mean field value. This is a joint work with J.C. Mourrat (Lyon).
Hao Shen : Stochastic PDEs and regularity structures
- Probability ( 207 Views )In this talk I will review the basic ideas of the regularity structure theory developed by Martin Hairer, as well as its applications to stochastic PDE problems. I will then discuss my joint work with Hairer on the sine-Gordon equation and central limit theorems for stochastic PDEs.
Robin PEMANTLE : Zeros of random analytic functions and their derivatives
- Probability ( 207 Views )I will discuss a series of results concerning the effect of the derivative operator on the locations of the zeros of a random analytic function. Two models are considered. In the first, the zeros are chosen IID from some measure on the complex plane. In the second, the zeros are chosen to be a Poisson point process on the real line. Repeated differentiation results in a nearly deterministic zero set.
Erika Berenice Roldan Roa : Asymptotic behavior of the homology of random polyominoes
- Probability ( 197 Views )In this talk we study the rate of growth of the expectation of the number of holes (the rank of the first homology group) in a polyomino with uniform and percolation distributions. We prove the existence of linear bounds for the expected number of holes of a polyomino with respect to both the uniform and percolation distributions. Furthermore, we exhibit particular constants for the upper and lower bounds in the uniform distribution case. This results can be extend, using the same techniques, to other polyforms and higher dimensions.
Amarjit Budhiraja : Invariant measures of the infinite Atlas model: domains of attraction, extremality, and equilibrium fluctuations.
- Probability ( 113 Views )The infinite Atlas model describes a countable system of competing Brownian particles where the lowest particle gets a unit upward drift and the rest evolve as standard Brownian motions. The stochastic process of gaps between the particles in the infinite Atlas model has a one parameter family {p(a), a > 0} of product form mutually singular stationary distributions. We say that an initial distribution of gaps is in the weak domain of attraction of the stationary measure p(a) if the time averaged laws of the stochastic process of the gaps, when initialized using that distribution, converge to p(a) weakly in the large time limit. We provide general sufficient conditions on the initial gap distribution of the Atlas particles for it to lie in the weak domain of attraction of p(a) for each a. Results on extremality and ergodicity of p(a) will be presented. Finally, I will describe some recent results on fluctuations of the Atlas model from inhomogeneous stationary profiles. This is based on joint work with Sayan Banerjee and Peter Rudzis.
Corrine Yap : Reconstructing Random Pictures
- Probability ( 97 Views )Reconstruction problems ask whether or not it is possible to uniquely build a discrete structure from the collection of its substructures of a fixed size. This question has been explored in a wide range of settings, most famously with graphs and the resulting Graph Reconstruction Conjecture due to Kelly and Ulam, but also including geometric sets, jigsaws, and abelian groups. In this talk, we'll consider the reconstruction of random pictures (n-by-n grids with binary entries) from the collection of its k-by-k subgrids and prove a nearly-sharp threshold for k = k(n). Our main proof technique is an adaptation of the Peierls contour method from statistical physics. Joint work with Bhargav Narayanan.
Zack Bezemek : Large Deviations and Importance Sampling for Weakly Interacting Diffusions
- Probability ( 89 Views )We consider an ensemble of N interacting particles modeled by a system of N stochastic differential equations (SDEs). The coefficients of the SDEs are taken to be such that as N approaches infinity, the system undergoes Kacâ??s propagation of chaos, and is well-approximated by the solution to a McKean-Vlasov Equation. Rare but possible deviations of the behavior of the particles from this limit may reflect a catastrophe, and computing the probability of such rare events is of high interest in many applications. In this talk, we design an importance sampling scheme which allows us to numerically compute statistics related to these rare events with high accuracy and efficiency for any N. Standard Monte Carlo methods behave exponentially poorly as N increases for such problems. Our scheme is based on subsolutions of a Hamilton-Jacobi-Bellman (HJB) Equation on Wasserstein Space which arises in the theory of mean-field control. This HJB Equation is seen to be connected to the large deviations rate function for the empirical measure on the ensemble of particles. We identify conditions under which our scheme is provably asymptotically optimal in N in the sense of log-efficiency. We also provide evidence, both analytical and numerical, that with sufficient regularity of the solution to the HJB Equation, our scheme can have vanishingly small relative error as N increases.