Quicklists
public 01:34:53

Shankar Bhamidi : Two philosophies for random graphs and networks: Local weak convergence and scaling limits

  -   Probability ( 100 Views )

The last few years have witnessed an explosion in the number of mathematical models for random graphs and networks, as well as models for dynamics on these network models. In this context I would like to exhibit the power of two well known philosophies in attacking problems in random graphs and networks: First, local weak convergence: The idea of local neighborhoods of probabilistic discrete structures (such as random graphs) converging to the local neighborhood of limiting infinite objects has been known for a long time in the probability community and has proved to be remarkably effective in proving convergence results in many different situations. Here we shall give a wide range of examples of the above methodology. In particular, we shall show how the above methodology can be used to tackle problems of flows through random networks, where we have a random network with nodes communicating via least cost paths to other nodes. We shall show in some models on the completely connected network how the above methodology allows us to prove the convergence of the empirical distribution of edge flows, exhibiting how macroscopic order emerges from microscopic rules. Also, we shall show how for a wide variety of random trees (uniform random trees, preferential attachment trees arising from a wide variety of attachment schemes, models of trees from Statistical Physics etc) the above methodology shows the convergence of the spectral distribution of the adjacency matrix of theses trees to a limiting non random distribution function. Second, scaling limits: For the analysis of critical random graphs, one often finds that properly associated walks corresponding to the exploration of the graph encode a wide array of information (including the size of the maximal components). In this context we shall extend work of Aldous on Erdos-Renyi critical random graphs to the context of inhomogeneous random graph models. If time permits we shall describe the connection between these models and the multiplicative coalescent, arising from models of coagulation in the physical sciences.

public 01:29:47

Sayan Banerjee : Coupling, geometry and hypoellipticity

  -   Probability ( 107 Views )

Coupling is a way of constructing Markov processes with prescribed laws on the same space. The coupling is called Markovian if the coupled processes are co-adapted to the same filtration. We will first investigate Markovian couplings of elliptic diffusions and demonstrate how the rate of coupling (how fast you can make the coupled processes meet) is intimately connected to the geometry of the underlying space. Next, we will consider couplings of hypoelliptic diffusions (diffusions driven by vector fields whose Lie algebra span the whole tangent space). Constructing successful couplings (where the coupled processes meet almost surely) for these diffusions is a much more subtle question as these require simultaneous successful coupling of the driving Brownian motions as well as a collection of their path functionals. We will construct successful Markovian couplings for a large class of hypoelliptic diffusions. We will also investigate non-Markovian couplings for some hypoelliptic diffusions, namely the Kolmogorov diffusion and Brownian motion on the Heisenberg group, and demonstrate how these couplings yield sharp estimates for the total variation distance between the laws of the coupled diffusions when Markovian couplings fail. Furthermore, we will demonstrate how non-Markovian couplings can be used to furnish purely analytic gradient estimates of harmonic functions on the Heisenberg group by purely probabilistic means, providing yet another strong link between probability and geometric analysis. This talk is based on joint works with Wilfrid Kendall, Maria Gordina and Phanuel Mariano.