Quicklists
public 01:34:50

Ted Cox : Convergence of finite voter model densities

  -   Probability ( 105 Views )

public 01:34:49

Martin Hairer : Weak universality of the KPZ equation

  -   Probability ( 107 Views )

public 01:34:57

Paul Bressloff : Stochastic models of intracellular transport: a PDE perspective

  -   Probability ( 97 Views )

The efficient delivery of proteins and other molecular products to their correct location within a cell (intracellular transport) is of fundamental importance to normal cellular function and development. Moreover, the breakdown of intracellular transport is a major contributing factor to many degenerative diseases. There are two major types of transport. (I) Passive diffusion within the cytosol or the surrounding plasma membrane of the cell. Since the aqueous environment (cytosol) of a cell is highly viscous at the length and velocity scales of macromolecules (low Reynolds number), a diffusing particle can be treated as an overdamped Brownian particle where inertial effects are ignored. (II) Active motor-driven transport along polymerized filaments such as microtubules and F-actin that comprise the cytoskeleton. At appropriate length and time scales, active transport can either be modeled as a velocity-jump process or as an advection-diffusion process. In this talk I present various PDE models of active and passive transport within cells. The bulk of the talk will focus on three examples: synaptic democracy and vesicular transport in axons and dendrites; stochastically gated diffusion in bounded domains; cytoneme-based transport of morphogens during embryogenesis. (A cytoneme is a thin actin-rich filament that forms direct contacts between cells and is thought to provide an alternative to diffusion-based morphogen gradient formation.) Other applications include cellular length control, cell polarization, and synaptogenesis in C. elegans.

public 01:24:57

Erik Slivken : Pattern-avoiding permutations and Dyson Brownian motion

  -   Probability ( 120 Views )

Let \(S_n\) denote the set of permutations of length \(n\). For a permutation \(\tau \in S_n\) we say \(\tau\) contains a pattern \(\sigma\in S_k\) if there is a subsequence \(i_1 < \cdots < i_k\) such that \(\tau_{i_1} \cdots \tau_{i_k}\) has the the same relative order of \(\sigma\). If \(\tau\) contains no pattern \(\sigma\), we say that \(\tau\) avoids \(\sigma\). We denote the set of \(\sigma\)-avoiding permutations of length \(n\) by \(S_n(\sigma)\). Recently, there has been a number of results that help describe the geometric properties of a uniformly random element in \(S_n(\sigma)\). Many of these geometric properties are related to well-studied random objects that appear in other settings. For example, if \(\sigma \in S_3\), we have that a permutation chosen uniformly in \(S_n(\sigma)\) converges, in some appropriate sense, to Brownian excursion. Furthermore for \(\sigma = 123,312\) or\( 231\), we can describe properties like the number and location of fixed points in terms of Brownian excursion. Larger patterns are much more difficult to understand. Currently even the simplest question, enumeration, is unknown for the pattern \(\sigma = 4231\). However, for the monotone decreasing pattern \(\sigma= (d+1)d\cdots 21\), \(S_n(\sigma)\) can be coupled with a random walk in a cone that, in some appropriate sense, converges to a traceless Dyson Brownian motion.

public 01:34:49

No seminar : Sow Day

  -   Probability ( 99 Views )

public 01:02:33

Zack Bezemek : Large Deviations and Importance Sampling for Weakly Interacting Diffusions

  -   Probability ( 71 Views )

We consider an ensemble of N interacting particles modeled by a system of N stochastic differential equations (SDEs). The coefficients of the SDEs are taken to be such that as N approaches infinity, the system undergoes Kac’s propagation of chaos, and is well-approximated by the solution to a McKean-Vlasov Equation. Rare but possible deviations of the behavior of the particles from this limit may reflect a catastrophe, and computing the probability of such rare events is of high interest in many applications. In this talk, we design an importance sampling scheme which allows us to numerically compute statistics related to these rare events with high accuracy and efficiency for any N. Standard Monte Carlo methods behave exponentially poorly as N increases for such problems. Our scheme is based on subsolutions of a Hamilton-Jacobi-Bellman (HJB) Equation on Wasserstein Space which arises in the theory of mean-field control. This HJB Equation is seen to be connected to the large deviations rate function for the empirical measure on the ensemble of particles. We identify conditions under which our scheme is provably asymptotically optimal in N in the sense of log-efficiency. We also provide evidence, both analytical and numerical, that with sufficient regularity of the solution to the HJB Equation, our scheme can have vanishingly small relative error as N increases.