Quicklists
public 01:44:53

Shankar Bhamidi : Flows, first passage percolation and random disorder in networks

  -   Probability ( 206 Views )

Consider a connected network and suppose each edge in the network has a random positive edge weight. Understanding the structure and weight of the shortest path between nodes in the network is one of the most fundamental problems studied in modern probability theory and goes under the name first passage percolation. It arises as a fundamental building block in many interacting particle system models such as the spread of epidemics on networks. To a large extent such problems have been only studied in the context of the n-dimensional lattice. In the modern context these problems take on an additional significance with the minimal weight measuring the cost of sending information while the number of edges on the optimal path (hopcount) representing the actual time for messages to get between vertices in the network. Given general models of random graphs with random edge costs, can one develop techniques to analyze asymptotics of functionals of interest which are robust to the model formulation? The aim of this talk is to describe a heuristic based on continuous time branching processes which gives very easily, a wide array of asymptotic results for random network models in terms of the Malthusian rate of growth and the stable age distribution of associated branching process. These techniques allow us to solve not only first passage percolation problems rigorously but also understand functionals such as the degree distribution of shortest path trees, congestion across edges as well as asymptotics for “betweeness centrality” a concept of crucial interest in social networks, in terms of Cox processes and extreme value distributions. These techniques also allow one to exactly solve models of “weak disorder” in the context of the stochastic mean field model of distance, a model of great interest in probabilistic combinatorial optimization.

public 01:34:53

Shankar Bhamidi : Two philosophies for random graphs and networks: Local weak convergence and scaling limits

  -   Probability ( 100 Views )

The last few years have witnessed an explosion in the number of mathematical models for random graphs and networks, as well as models for dynamics on these network models. In this context I would like to exhibit the power of two well known philosophies in attacking problems in random graphs and networks: First, local weak convergence: The idea of local neighborhoods of probabilistic discrete structures (such as random graphs) converging to the local neighborhood of limiting infinite objects has been known for a long time in the probability community and has proved to be remarkably effective in proving convergence results in many different situations. Here we shall give a wide range of examples of the above methodology. In particular, we shall show how the above methodology can be used to tackle problems of flows through random networks, where we have a random network with nodes communicating via least cost paths to other nodes. We shall show in some models on the completely connected network how the above methodology allows us to prove the convergence of the empirical distribution of edge flows, exhibiting how macroscopic order emerges from microscopic rules. Also, we shall show how for a wide variety of random trees (uniform random trees, preferential attachment trees arising from a wide variety of attachment schemes, models of trees from Statistical Physics etc) the above methodology shows the convergence of the spectral distribution of the adjacency matrix of theses trees to a limiting non random distribution function. Second, scaling limits: For the analysis of critical random graphs, one often finds that properly associated walks corresponding to the exploration of the graph encode a wide array of information (including the size of the maximal components). In this context we shall extend work of Aldous on Erdos-Renyi critical random graphs to the context of inhomogeneous random graph models. If time permits we shall describe the connection between these models and the multiplicative coalescent, arising from models of coagulation in the physical sciences.