Giorgio Cipolloni : Logarithmically correlated fields from non-Hermitian random matrices
- Probability ( 0 Views )We study the Brownian evolution of large non-Hermitian matrices and show that their log-determinant converges to a 2+1-dimensional Gaussian field in the Edwards-Wilkinson regularity class, i.e. logarithmically correlated for the parabolic distance. This gives a dynamical extension of the celebrated result by Rider and Virag (2006) proving that the fluctuations of the eigenvalues of Gaussian non-Hermitian matrices converge to a 2-dimensional log-correlated field. Our result, previously not known even in the Gaussian case, holds out of equilibrium for general matrices with i.i.d. entries. We also study the extremal values of these fields and demonstrate their logarithmic dependence on the matrix dimension.
Benjamin McKenna : Injective norm of real and complex random tensors
- Probability ( 0 Views )The injective norm is a natural generalization to tensors of the operator norm of a matrix. In quantum information, the injective norm is one important measure of genuine multipartite entanglement of quantum states, where it is known as the geometric entanglement. We give a high-probability upper bound on the injective norm of real and complex Gaussian random tensors, corresponding to a lower bound on the geometric entanglement of random quantum states. The proof is based on spin-glass methods, the Kac—Rice formula, and recent progress coming from random matrices. Joint work with Stéphane Dartois.