public 01:34:43

Ngo Bao Chau : On the generalized Hitchin fibration and regular quotient

  -   Uploaded by schrett ( 36 Views )

public 01:34:44

Rahul Dalal : Counting level-1, quaternionic automorphic representations on G2

  -   Uploaded by schrett ( 121 Views )

Quaternionic automorphic representations are one attempt to generalize to other groups the special place holomorphic modular forms have among automorphic representations of GL2. Like holomorphic modular forms, they are defined by having their real component be one of a particularly nice class (in this case, called quaternionic discrete series). We count quaternionic automorphic representations on the exceptional group G2 by developing a G2 version of the classical Eichler-Selberg trace formula for holomorphic modular forms. There are two main technical difficulties. First, quaternionic discrete series come in L-packets with non-quaternionic members and standard invariant trace formula techniques cannot easily distinguish between discrete series with real component in the same L-packet. Using the more modern stable trace formula resolves this issue. Second, quaternionic discrete series do not satisfy a technical condition of being "regular", so the trace formula can a priori pick up unwanted contributions from automorphic representations with non-tempered components at infinity. Applying some computations of Mundy, this miraculously does not happen for our specific case of quaternionic representations on G2. Finally, we are only studying level-1 forms, so we can apply some tricks of Chenevier and Ta茂bi to reduce the problem to counting representations on the compact form of G2 and certain pairs of modular forms. This avoids involved computations on the geometric side of the trace formula.

public 01:24:57

Dan Goldston : Small Gaps between Zeros of the Riemann Zeta-Function

  -   Uploaded by root ( 108 Views )

We consider the complex zeros of the Riemann zeta-function &rho = &beta + i &gamma, &gamma > 0. The Riemann Hypothesis (RH) is that &beta = 1/2. If we consider the vertical distribution of these zeros, then the average vertical spacing between zeros at height T is 2&pi / log T. We expect theoretically and find numerically that the distribution of the lengths of these gaps follows a certain continuous GUE distribution where both very small and very large multiples of the average spacing occur. In contrast to this, the existence of a Landau Siegel-zero would force all the gaps in a certain large range to never be closer than half the average spacing, and also have even more bizarre and unlikely properties. There are three methods that have been developed to prove something about small gaps. First, Selberg in the 1940's using moments for the number of zeros in short intervals, was able to prove unconditionally that there are some gaps larger than the average spacing and others smaller than the average spacing. Next assuming RH Montgomery in 1972 introduced a pair correlation method for zeros and produced small gaps less than 0.67 times the average spacing. Finally, in 1981 Montgomery-Odlyzko assuming RH introduced a Dirichlet polynomial weighted method which found small gaps less then 0.5179 times the average spacing. (This method was further developed by Conrey, Ghosh, and Gonek.) These methods all exhibit the presumed barrier at 1/2 times the average spacing for small gaps. I will talk about two projects that are work in progress. The first is joint with Hugh Montgomery and is motivated by the observations that all the results mentioned above do not exclude the possibility that the small gaps found are all coming from multiple zeros and thus gaps of length zero, and at present we do not know if there are any non-zero gaps that are shorter then the average spacing. While we have not yet be able to prove there are any smaller than average non-zero gaps, we can quantify the relationship between non-zero gaps and multiple zeros and show there is a positive proportion of one or the other. The second project is joint work with Caroline Turnage-Butterbaugh where we have developed a Dirichlet Polynomial Weighted Pair Correlation Method which potentially can be applied to a number of questions on zeros.