Murilo Corato Zanarella : First explicit reciprocity law for unitary Friedbergâ??Jacquet periods
- Number Theory ( 0 Views )In the early 2000's, Bertolini and Darmon introduced a new technique to bound Selmer groups of elliptic curves via level raising congruences. This was the first example of what is now termed a "bipartite Euler system", and over the last decade we have seen many breakthroughs on constructing such systems for other Galois representations, including settings such as twisted and cubic triple product, symmetric cube, and Rankinâ??Selberg, with applications to the Blochâ??Kato conjecture and to Iwasawa theory. For this talk, I'll consider Galois representations attached to automorphic forms on a totally definite unitary group U(2r) over a CM field which are distinguished by the subgroup U(r) x U(r). I'll discuss a new "first explicit reciprocity law" in this setting and its application to the corresponding Blochâ??Kato conjecture, focusing on new obstacles which arise from the lack of local multiplicity one.
Peter Dillery : Non-basic rigid packets for discrete L-parameters
- Number Theory ( 0 Views )We formulate a new version of the local Langlands correspondence for discrete L-parameters which involves (Weyl orbits of) packets of representations of all twisted Levi subgroups of a connected reductive group G through which the parameter factors and prove that this version of the correspondence follows if one assumes the pre-existing local Langlands conjectures. Twisted Levi subgroups are crucial objects in the study of supercuspidal representations; this work is a step towards deepening the relationship between the representation theory of p-adic groups and the Langlands correspondence. This is joint work with David Schwein (Bonn).