## Gene Kopp : The Shintani-Faddeev modular cocycle

- Uploaded by schrett ( 10 Views )We ask the question, "how does the infinite q-Pochhammer symbol transform under modular transformations?" and connect the answer to that question to the Stark conjectures. The infinite q-Pochhammer symbol transforms by a generalized factor of automorphy, or modular 1-cocycle, that is analytic on a cut complex plane. This "Shintani-Faddeev modular cocycle" is an SL_2(Z)-parametrized family of functions generalizing Shintani's double sine function and Faddeev's noncompact quantum dilogarithm. We relate real multiplication values of the Shintani-Faddeev modular cocycle to exponentials of certain derivative L-values, conjectured by Stark to be algebraic units generating abelian extensions of real quadratic fields.

## Kim Klinger-Logan : A shifted convolution problem arising from physics

- Uploaded by schrett ( 13 Views )Physicists Green, Russo, and Vanhove have discovered solution to differential equations involving automorphic forms appear at the coefficients to the 4-graviton scattering amplitude in type IIB string theory. Specifically, for \Delta the Laplace-Beltrami operator and E_s(g) a Langlands Eisenstein series, solutions f(g) of (\Delta-\lambda) f(g) = E_a(g) E_b(g) for a and b half-integers on certain moduli spaces G(Z)\G(R)/K(R) of real Lie groups appear as coefficients to the analytic expansion of the scattering amplitude. We will briefly discuss different approaches to finding solutions to such equations and focus on a shifted convolution sum of divisor functions which appears as the Fourier modes associated to the homogeneous part of the solution. Initially, it was thought that, when summing over all Fourier modes, the homogeneous solution would vanish but recently we have found an exciting error term. This is joint work with Stephen D. Miller, Danylo Radchenko and Ksenia Fedosova.

## Xiao (Griffin) Wang : Multiplicative Hitchin Fibration and Fundamental Lemma

- Uploaded by schrett ( 24 Views )Given a reductive group 𝐺 and some auxiliary data, one has the Hitchin fibration associated with the adjoint action of 𝐺 on Lie(𝐺), which is successfully used by B. C. Ngô to prove the endoscopic fundamental lemma for Lie algebras. Following the same idea, there is a group analogue called the multiplicative Hitchin fibration by replacing the Lie algebra with reductive monoids, and one can hope to directly prove the fundamental lemma at group level. This project is almost complete and we report the results so far. There are many new features that are not present in the additive case, among which is a pleasant surprise that there might be some strata in the support theorem that are not explained by endoscopy.

## Pam Gu : A family of period integrals related to triple product $L$-functions

- Uploaded by schrett ( 18 Views )Let $F$ be a number field with ring of adeles $\mathbb{A}_F$. Let $r_1,r_2,r_3$ be a triple of positive integers and let $\pi:=\otimes_{i=1}^3\pi_i$ where the $\pi_i$ are all cuspidal automorphic representations of $\mathrm{GL}_{r_i}(\mathbb{A}_F)$. We denote by $L(s,\pi, \otimes^3)=L(s, \pi_1\times \pi_2 \times \pi_3)$ the corresponding triple product $L$-function. It is the Langlands $L$-function defined by the tensor product representation $\otimes^3:{}^L(\mathrm{GL}_{r_1} \times \mathrm{GL}_{r_2} \times \mathrm{GL}_{r_3}) \to \mathrm{GL}_{r_1r_2r_3}(\mathbb{C})$. In this talk I will present a family of Eulerian period integrals, which are holomorphic multiples of the triple product -function in a domain that nontrivially intersects the critical strip. We expect that they satisfy a local multiplicity one statement and a local functional equation. This is joint work with Jayce Getz, Chun-Hsien Hsu and Spencer Leslie.