Manish Mishra : Self-dual cuspidal representations
- Uploaded by schrett ( 152 Views )Let F be a non-archimedean local field (such as ℚ_p). The Langlands philosophy says that the arithmetic of F is intimately related to the category R(G) of smooth complex representations of G(F) where G denotes a reductive F-group (for example the general linear group). The building blocks of R(G) are the "supercuspidal" representations of G(F). I will define this term in the talk. The category R(G) comes equipped with an involution - the "contragradient" or the "dual". The supercuspidal representations of G(F) which are self-dual are of considerable interest in the subject. In this talk, I will talk about a joint work with Jeff Adler about the existence of supercuspidals and self-dual supercuspidals. Specifically, we show that G(F) always admits supercuspidal representations. Under some mild hypotheses on G, we determine precisely when G(F) admits self-dual supercuspidal representations. These results are obtained from analogous results for finite reductive groups which I will also talk about.
Robert Rhoades : The story of a strange function
- Uploaded by root ( 94 Views )In a 1997 Fields Medalist Maxim Kontsevich suggested that the function F(q) = 1 + (1-q) + (1-q)(1-q^2) + (1-q)(1-q^2)(1-q^3)+ , defined only for q a root of unity, is similar to certain functions arising from the computation of Feynman integrals in quantum field theory. In the last sixteen years this function has been connected to interval orders in decision making theory, ascent sequences and matchings in combinatorics, and Vassiliev invariants in knot theory. Don Zagier related the asymptotic properties of this function to the half-derivatives of modular forms and was led to define a notion of quantum modular form. In a trilogy of papers, my collaborators (Andrews, Bryson, Ono, Pitman, Zwegers) and I have connected this function to Ramanujans mock theta functions and the combinatorics of unimodal sequences. I will tell the story of this function and these many relationships.