## Manish Mishra : Self-dual cuspidal representations

- Number Theory ( 248 Views )Let F be a non-archimedean local field (such as ℚ_p). The Langlands philosophy says that the arithmetic of F is intimately related to the category R(G) of smooth complex representations of G(F) where G denotes a reductive F-group (for example the general linear group). The building blocks of R(G) are the "supercuspidal" representations of G(F). I will define this term in the talk. The category R(G) comes equipped with an involution - the "contragradient" or the "dual". The supercuspidal representations of G(F) which are self-dual are of considerable interest in the subject. In this talk, I will talk about a joint work with Jeff Adler about the existence of supercuspidals and self-dual supercuspidals. Specifically, we show that G(F) always admits supercuspidal representations. Under some mild hypotheses on G, we determine precisely when G(F) admits self-dual supercuspidal representations. These results are obtained from analogous results for finite reductive groups which I will also talk about.