## Dick Hain : Hecke actions on loops and periods of iterated itegrals of modular forms

- Number Theory ( 314 Views )Hecke operators act on many invariants associated to modular curves and their generalizations. For example, they act on modular forms and on cohomology groups of modular curves. In each of these cases, they generate a semi-simple, commutative algebra. In the first part of this talk, I will recall (in friendly, elementary, geometric terms) what Hecke operators are and how they act on the standard invariants. I will then show that they also act on loops in modular curves (aka, conjugacy classes in modular groups). In this case, the Hecke operators generate a non-commutative subalgebra of the vector space generated by the conjugacy classes, which leads to a very natural non-commutative generalization of the classical Hecke algebra. In the second part of the talk will discuss why one might want do construct such a Hecke action. As a prelude to this, I will explain why this Hecke action commutes with the natural action of the absolute Galois group after taking profinite completions. And, in the unlikely event that I have sufficient time, I will also explain how (after taking the appropriate completion) this Hecke action is also compatible with Hodge theory.

## David Schwein : Recent progress on the formal degree conjecture

- Number Theory ( 288 Views )The local Langlands correspondence is a dictionary between representations of two kinds of groups: reductive p-adic groups (such as the general linear group) and the absolute Galois groups of p-adic fields. One entry in the dictionary is a conjectural formula of Hiraga, Ichino, and Ikeda for the size of a representation of a p-adic group, its "formal degree", in terms of the corresponding representation of a Galois group. In this talk, after reviewing the broad shape of p-adic representation theory, I'll explain why the conjecture is true for almost all supercuspidals, the fundamental building blocks of the subject.

## Jonathan P. Wang : Derived Satake equivalence for Godement-Jacquet monoids

- Number Theory ( 275 Views )Godement-Jacquet use the Schwartz space of n-by-n matrices to construct the standard L-function for GL_n. Ben-Zvi, Sakellaridis and Venkatesh conjecture that the local unramified part of this theory can be categorified to an equivalence between an 'analytic' category of constructible sheaves and a 'spectral' category of dg modules. In this talk I will explain the proof of this equivalence and some of its properties. I will also discuss connections to conjectures of Braverman-Kazhdan on constructions of general automorphic L-functions. This is joint work with Tsao-Hsien Chen (in preparation).

## Manish Mishra : Self-dual cuspidal representations

- Number Theory ( 249 Views )Let F be a non-archimedean local field (such as â??_p). The Langlands philosophy says that the arithmetic of F is intimately related to the category R(G) of smooth complex representations of G(F) where G denotes a reductive F-group (for example the general linear group). The building blocks of R(G) are the "supercuspidal" representations of G(F). I will define this term in the talk. The category R(G) comes equipped with an involution - the "contragradient" or the "dual". The supercuspidal representations of G(F) which are self-dual are of considerable interest in the subject. In this talk, I will talk about a joint work with Jeff Adler about the existence of supercuspidals and self-dual supercuspidals. Specifically, we show that G(F) always admits supercuspidal representations. Under some mild hypotheses on G, we determine precisely when G(F) admits self-dual supercuspidal representations. These results are obtained from analogous results for finite reductive groups which I will also talk about.

## Rafah Hajjar Munoz : On the residually indistinguishable case of Ribetâ??s lemma

- Number Theory ( 244 Views )Ribetâ??s method describes a way to construct a certain extension of fields from the existence of a suitable modular form. To do so, we consider the Galois representation of an appropriate cuspform, which gives rise to a cohomology class that cuts out our desired extension. The process of obtaining a cohomology class from such a representation is usually known as Ribetâ??s lemma. Several generalizations of this lemma have been stated and proved during the last decades, but the vast majority of them makes the assumption that the representation is residually distinguishable, meaning that the characters of its residual decomposition are non-congruent modulo the maximal ideal. However, recent applications of Ribetâ??s method, such as for the proof of the 2-part of the Brumer-Stark conjecture, have encountered the challenge that the representation we obtain does not satisfy this assumption. In my talk, I describe the limitations of the residually indistinguishable case and conjecture a new general version of Ribetâ??s lemma in this context, giving a proof in some particular cases.

## William Sokurski : Fourier operators on GL(2) for odd Adjoint powers

- Number Theory ( 229 Views )Recently A. Braverman, D. Kazhdan, and L. Lafforgue have interpreted Langlands' functoriality in terms of a generalized harmonic analysis on reductive groups that requires the existence of new spaces of functions and an associated, generally non-linear, involutive Fourier transform. This talk will discuss some of these objects involved in the local p-adic situation, after introducing some ideas and basic constructions involved. Specifically, the local Fourier transforms have a nice interpretation in terms of their spectral decomposition giving the gamma factors that appear in functional equations of L functions, which, in the standard case allows one to write down the epsilon factors attached to supercuspidal representations as non-abelian Gauss sums. For G=GL(2), we use the local Langlands correspondence to provide L and epsilon factors for odd adjoint power transfers and use this to interpret the Adjoint power Fourier-transform such that its spectral decomposition on supercuspidal representations is given explicitly by certain non-abelian Kloosterman sums, which we use to give a form of the Fourier operator.

## Michael Harris : Chern classes of automorphic vector bundles

- Number Theory ( 226 Views )Holomorphic modular forms on the Shimura variety S(G) attached to the reductive group G can be interpreted naturally as sections of automorphic vector bundles: locally free sheaves that can be defined analytically by exploiting the structure of a Shimura variety as a quotient of a symmetric space. The construction can also be made algebraic, and in this way one gets a canonical functor from the tensor category of representations of a certain Levi subgroup K of G to the tensor category of vector bundles on S(G), and thus a homomorphism from the representation ring of K to K_0(S(G)). When S(G) is compact we determine how the image of this homomorphism behaves under Chern characters to Deligne cohomology and continuous l-adic cohomology. When S(G) is non-compact and of abelian type, we use perfectoid geometry to define Chern classes in the l-adic cohomology of the minimal compactification of S(G); these are analogous to the topological cohomology classes defined by Goresky and Pardon, using differential geometry. (Joint work with Helene Esnault.)

## Jessica Fintzen : Representations of p-adic groups

- Number Theory ( 215 Views )In the 1990s Moy and Prasad revolutionized p-adic representation theory by showing how to use Bruhat-Tits theory to assign invariants to p-adic representations. The tools they introduced resulted in rapid advancements in both representation theory and harmonic analysis -- areas of central importance in the Langlands program. A crucial ingredient for many results is an explicit construction of (types for) representations of p-adic groups. In this talk I will indicate why, survey what constructions are known (no knowledge about p-adic groups assumed) and present recent developments based on a refinement of Moy and Prasad's invariants.

## Omer Offen : On the distinction problem of parabolically induced representations for Galois symmetric pairs

- Number Theory ( 211 Views )Let G be the group of rational points of a linear algebraic group over a local field. A representation of G is distinguished by a subgroup H if it admits a non-zero H-invariant linear form. A Galois symmetric pair (G,H) is such that H=Y(F) and G=Y(E) where E/F is a quadratic extension of local fields and Y is a reductive group defined over F. In this talk we show that for a Galois symmetric pair, often the necessary condition for H-distinction of a parabolically induced representation, emerging from the geometric lemma of Berenstein-Zelevinsky, are also sufficient. In particular, we obtain a characterization of H-distinguished representations induced from cuspidal in terms of distinction of the inducing data. We explicate these results further when Y is a classical group and point out some global applications for Galois distinguished automorphic representations of SO(2n+1). This is joint work with Nadir Matringe.

## Mahesh Kakde : Congruences between derivatives of geometric L-series

- Number Theory ( 205 Views )I will present a formulation of equivariant Tamagawa number conjecture for flat smooth sheaves on separated schemes of finite type over a finite field. After sketching a proof of this I will give application to Chinburgâ??s conjectures in Galois module theory and tower of fields conjecture. If time permits I will also give an application towards equivariant BSD for abelian varieties defined over global function fields. This is a joint work with David Burns.

## Hiro-aki Narita : Special Bessel models with the local Maass relation and non-tempered automorphic forms on orthogonal groups

- Number Theory ( 201 Views )I will provide some general class of automorphic forms or representations on a general orthogonal group, having a non-tempered non-archimedean local component. We call them non-tempered automorphic forms or representations. It is a fundamental problem to find non-tempered cusp forms, which are nothing but counterexamples to the Ramanujan conjecture. The general class above includes the cusp forms given by the Oda-Rallis-Schiffmann lifting to O(2,m) and non-holomorphic lifting to O(1,8n+1) recently given by the joint work with Yingkun Li and Ameya Pitale. Such general class is given by means of the notion of the special Bessel model and the local Maass relation.

## Zhilin Luo : Bias of root numbers for Hilbert new forms of cubic level

- Number Theory ( 198 Views )We express the bias of global root numbers of Hilbert new forms of cubic level via special values of Dedekind L-functions attached to CM extensions determined by the level. In particular, our formula includes the case when weight 2 appears. We establish the formula by 1) a limit form of Jacquet-Zagier trace formula on PGL_2 associated to certain not necessarily integrable test functions at Archimedean places (when weight 2 occurs), and 2) showing the meromorphic continuation of certain Dirichlet series with coefficients given by special value of Dedekind L-functions via spectral side of the Jacquet-Zagier trace formula. This is a joint work with Q. Pi and H. Wu. arXiv: 2110.08310.

## Ken Ono : Zeta polynomials for modular forms

- Number Theory ( 182 Views )The speaker will discuss recent work on Manin's theory of zeta polynomials for modular forms. He will describe recent results which confirm Manin's speculation that there is such a theory which arises from periods of newforms. More precisely, for each even weight k>2 newform f, the speaker will describe a canonical polynomial Zf(s) which satisfies a functional equation of the form Zf(s)=Zf(1−s), and also satisfies the Riemann Hypothesis: if Zf(ρ)=0, then Re(ρ)=1/2. This zeta function is arithmetic in nature in that it encodes the moments of the critical values of L(f,s). This work builds on earlier results of many people on period polynomials of modular forms. This is joint work with Seokho Jin, Wenjun Ma, Larry Rolen, Kannan Soundararajan, and Florian Sprung.

## Benedict Morrissey : Regular quotients and Hitchin fibrations (joint work with NgÃ´ B.-C.)

- Number Theory ( 178 Views )Orbital integrals for the Lie algebra can be analyzed using the Hitchin fibration. In turn the Hitchin fibration can be analyzed via the morphism g^{reg} ----> g//G from the regular elements of the Lie algebra, to the GIT quotient by the adjoint action. In trying to generalize this story by replacing the action of G on g by the action of G on some sufficiently nice variety M, we must replace the GIT quotient with what we call the regular quotient. This talk will look at the reasons for this, and the difference between the GIT and regular quotients in the case of G acting on G by conjugation (when the derived group of G is not simply connected), G acting on the commuting scheme, and G acting on the Vinberg monoid.

## Edna Jones : The Kloosterman circle method and weighted representation numbers of positive definite quadratic forms

- Number Theory ( 177 Views )We develop a version of the Kloosterman circle method with a bump function that is used to provide asymptotics for weighted representation numbers of positive definite integral quadratic forms. Unlike many applications of the Kloosterman circle method, we explicitly state some constants in the error terms that depend on the quadratic form. This version of the Kloosterman circle method uses Gauss sums, Kloosterman sums, SaliÃ© sums, and a principle of nonstationary phase. If time permits, we may discuss a potential application of this version of the Kloosterman circle method to a proof of a strong asymptotic local-global principle for certain Kleinian sphere packings.

## Hunter Brooks : Special Value Formulas for Rankin-Selberg p-adic L-Functions

- Number Theory ( 176 Views )We discuss special value formulas for a p-adic L-function L_p(f, \chi), where f is a fixed newform and \chi varies over the space of Hecke characters of a fixed imaginary quadratic field, as well as some recent applications. These formulas, first found by Bertolini, Darmon, and Prasanna, relate L_p(f, \mathbb{1}), a value which is outside the range of interpolation defining L_p, to arithmetic invariants of cycles on varieties fibered over modular curves.

## Rahul Dalal : Counting level-1, quaternionic automorphic representations on G2

- Number Theory ( 175 Views )Quaternionic automorphic representations are one attempt to generalize to other groups the special place holomorphic modular forms have among automorphic representations of GL2. Like holomorphic modular forms, they are defined by having their real component be one of a particularly nice class (in this case, called quaternionic discrete series). We count quaternionic automorphic representations on the exceptional group G2 by developing a G2 version of the classical Eichler-Selberg trace formula for holomorphic modular forms. There are two main technical difficulties. First, quaternionic discrete series come in L-packets with non-quaternionic members and standard invariant trace formula techniques cannot easily distinguish between discrete series with real component in the same L-packet. Using the more modern stable trace formula resolves this issue. Second, quaternionic discrete series do not satisfy a technical condition of being "regular", so the trace formula can a priori pick up unwanted contributions from automorphic representations with non-tempered components at infinity. Applying some computations of Mundy, this miraculously does not happen for our specific case of quaternionic representations on G2. Finally, we are only studying level-1 forms, so we can apply some tricks of Chenevier and TaÃ¯bi to reduce the problem to counting representations on the compact form of G2 and certain pairs of modular forms. This avoids involved computations on the geometric side of the trace formula.

## Jianqiang Zhao : Renormalizations of multiple zeta values

- Number Theory ( 159 Views )Calculating multiple zeta values at arguments of mixed signs in a way that is compatible with both the quasi-shuffle product and the meromorphic continuation, is commonly referred to as the renormalization problem for multiple zeta values. In this talk, we consider the set of all solutions to this problem and provide a framework for comparing its elements in terms of a free and transitive action of a particular subgroup of the group of characters of the quasi-shuffle Hopf algebra. This provides a transparent way of relating different solutions at non-positive values, which answers an open question in the recent literature. This is a joint work with Ebrahimi-Fard, Manchon and Singer.

## Adam Jacob : A special Lagrangian type equation for holomorphic line bundles

- Number Theory ( 150 Views )Consider a holomorphic line bundle L over a compact Kahler manifold. Motivated by mirror symmetry, I will define an equation on L that is the line bundle analogue of the special Lagrangian equation, which can be studied even when the base is not a Calabi-Yau manifold. I will show solutions are unique global minimizers of a positive functional. To address existence, I will introduce a line bundle analogue of the Lagrangian mean curvature flow, and prove convergence in certain cases. This is joint work with S.-T. Yau.

## Chun-Hsien Hsu : Weyl algebras on certain singular affine varieties

- Number Theory ( 149 Views )The module theory of the Weyl algebra, known as the theory of $D$-modules, has profound applications in various fields. One of the most famous results is the Riemann-Hilbert correspondence, establishing equivalence between holonomic $D$-modules and perverse sheaves on smooth complex varieties. However, when dealing with singular varieties, such correspondence breaks down due to the non-simplicity of Weyl algebras on singular varieties. In our ongoing work, we introduce a new ring of differential operators on certain singular affine varieties, whose definition is analytically derived from harmonic analysis. It should contain the Weyl algebra as a proper subring and shares many properties with the Weyl algebra on smooth varieties. In the talk, after a brief review of the Weyl algebra, I will explain how the new ring of differential operators arises as a consequence of an explicit form of the Poisson summation conjecture and discuss its properties.

## Yeansu Kim : CLASSIFICATION OF DISCRETE SERIES REPRESENTATIONS AND ITS APPLICATIONS ON THE GENERIC LOCAL LANGLANDS CORRESPONDENCE FOR ODD GSPIN GROUPS

- Number Theory ( 140 Views )The classification of discrete series is one main subject in Langlands program with numerous applications. We first explain the result on the classification of discrete series of odd GSpin groups, generalizing the MÅ?glin-Tadi Ìc classification for classical groups. Note that our approach will give alternate proof for classical groups. This is a joint work with Ivan Mati Ìc. We also explain its application on the generic local Langlands correspondence via Langlands-Shahidi method. If time permits, we will explain possible generalization of those to other groups, which is work in progress

## Freydoon Shahidi : Local Langlands correspondence and the exterior and symmetric square root numbers for GL(n)

- Number Theory ( 138 Views )We will discuss the notion of Artin root numbers attached to an n-dimensional continuous Frobenius-semisimple complex representation of the Weil-Deligne group and show their equalities with those defined by Langlands-Shahidi method through local Langlands correspondence for GL(n) and the exterior and symmetric square representation of the L-group GL(n,C) of GL(n). The proof is a robust deformation argument using local-global techniques, complemented with suitable asymptotic expansions for partial Bessel functions inspired by certain generalized Shalika germ expansions of Jacquet and Ye. This is a joint work with J. Cogdell and T.-L. Tsai.

## Albert Chau : Limits of the Kahler Ricci flow and non-negatively curved Kahler manifolds

- Number Theory ( 138 Views )In this talk I will discuss joint results with L.F.Tam on the limiting behavior of the Kahler Ricci flow and its application to the structure of non-negatively curved complete non-compact Kahler manifolds.

## Alina Bucur : Traces of high powers of Frobenius for cubic covers of the projective line over finite fields

- Number Theory ( 132 Views )The zeta function of a curve C over a finite field can be expressed in terms of the characteristic polynomial of its Frobenius endomorphism. We will see how one can compute the trace of high powers of this endomorphism in various moduli spaces. Finally, we will discuss how one can use this information to compute the one-level density -- which concerns low-lying zeros of the zeta function -- in the case of cubic covers of the projective line.

## Pam Gu : A family of period integrals related to triple product $L$-functions

- Number Theory ( 131 Views )Let $F$ be a number field with ring of adeles $\mathbb{A}_F$. Let $r_1,r_2,r_3$ be a triple of positive integers and let $\pi:=\otimes_{i=1}^3\pi_i$ where the $\pi_i$ are all cuspidal automorphic representations of $\mathrm{GL}_{r_i}(\mathbb{A}_F)$. We denote by $L(s,\pi, \otimes^3)=L(s, \pi_1\times \pi_2 \times \pi_3)$ the corresponding triple product $L$-function. It is the Langlands $L$-function defined by the tensor product representation $\otimes^3:{}^L(\mathrm{GL}_{r_1} \times \mathrm{GL}_{r_2} \times \mathrm{GL}_{r_3}) \to \mathrm{GL}_{r_1r_2r_3}(\mathbb{C})$. In this talk I will present a family of Eulerian period integrals, which are holomorphic multiples of the triple product -function in a domain that nontrivially intersects the critical strip. We expect that they satisfy a local multiplicity one statement and a local functional equation. This is joint work with Jayce Getz, Chun-Hsien Hsu and Spencer Leslie.

## Xiao (Griffin) Wang : Multiplicative Hitchin Fibration and Fundamental Lemma

- Number Theory ( 129 Views )Given a reductive group ğº and some auxiliary data, one has the Hitchin fibration associated with the adjoint action of ğº on Lie(ğº), which is successfully used by B. C. NgÃ´ to prove the endoscopic fundamental lemma for Lie algebras. Following the same idea, there is a group analogue called the multiplicative Hitchin fibration by replacing the Lie algebra with reductive monoids, and one can hope to directly prove the fundamental lemma at group level. This project is almost complete and we report the results so far. There are many new features that are not present in the additive case, among which is a pleasant surprise that there might be some strata in the support theorem that are not explained by endoscopy.

## Baiying Liu : On the Local Converse Theorem for p-adic GLn.

- Number Theory ( 127 Views )In this talk, I will introduce a complete proof of a standard conjecture on the local converse theorem for generic representations of GLn(F), where F is a non-archimedean local field. This is a joint work with Prof. Herve Jacquet.

## Brandon Levin NOTE SPECIAL TIME : Crystalline representations of minuscule type NOTE SPECIAL TIME

- Number Theory ( 126 Views )I will begin with an introduction to Galois deformation theory and its role in modularity lifting. This will motivate the study of local deformation rings and more specifically flat deformation rings. I will then discuss Kisin's work on flat deformations and explain how to generalize to Galois representations valued in an arbitrary reductive group. Kisin's techniques led to the successful determination of the connected components of the flat deformation ring in the 2-dimensional case. If time permits, I will touch on difficulties of going beyond GL_2.

## Matthew Litman : Markoff-type K3 Surfaces: Local and Global Finite Orbits

- Number Theory ( 124 Views )Markoff triples were introduced in 1879 and have a rich history spanning many branches of mathematics. In 2016, Bourgain, Gamburd, and Sarnak answered a long standing question by showing there exist infinitely many composite Markoff numbers. Their proof relied on showing the connectivity for an infinite family of graphs associated to Markoff triples modulo p for infinitely many primes p. In this talk we discuss what happens for the projective analogue of Markoff triples, that is surfaces W in P^1 x P^1 x P^1 cut out by the vanishing of a (2,2,2)-form that admit three non-commuting involutions and are fixed under coordinate permutations and double sign changes. Inspired by the work of B-G-S we investigate such surfaces over finite fields, specifically their orbit structure under their automorphism group. For a specific one-parameter subfamily W_k of such surfaces, we construct finite orbits in W_k(C) by studying small orbits that appear in W_k(F_p) for many values of p and k. This talk is based on joint work with E. Fuchs, J. Silverman, and A. Tran.