## Tony Feng : Steenrod operations and the Artin-Tate pairing

- Number Theory ( 240 Views )In 1966 Artin and Tate constructed a canonical pairing on the Brauer group of a surface over a finite field, and conjectured it to be alternating. This duality has analogous incarnations across arithmetic and topology, namely the Cassels-Tate pairing for a Jacobian variety, and the linking form on a 5-manifold. I will explain a proof of the conjecture, which is based on a surprising connection to Steenrod operations.

## Baiying Liu : On Fourier coefficients and Arthur parameters for classical groups

- Number Theory ( 184 Views )Recently, Jiang made a conjecture investigating the connection between two fundamental invariants of an automorphic representation \pi appearing in the discrete spectrum of quasi-split classical groups G(A). The first invariant is the wave front of \pi, WF(\pi), which is the set of maximal unipotent orbits of G, such that \pi admits a non-trivial Fourier coefficients with respect to them. The second invariant is the Arthur parameter \psi of \pi to which one can associate a unipotent orbit \underline{p}(\psi) of the dual group of G. The conjecture says that in any Arthur packet associated to \psi, the Barbasch-Vogan duality of the orbit \underline{p}(\psi) is a sharp upper bound for the wave front of the representations of the packet. This is an important conjecture that vastly generalizes Shahidi's conjecture which claims that in every tempered packet there exists a generic representation. In this talk, I will review this conjecture and present some recent progress towards it. This is a joint work in progress with Dihua Jiang.

## Edna Jones : The Kloosterman circle method and weighted representation numbers of positive definite quadratic forms

- Number Theory ( 177 Views )We develop a version of the Kloosterman circle method with a bump function that is used to provide asymptotics for weighted representation numbers of positive definite integral quadratic forms. Unlike many applications of the Kloosterman circle method, we explicitly state some constants in the error terms that depend on the quadratic form. This version of the Kloosterman circle method uses Gauss sums, Kloosterman sums, SaliĆ© sums, and a principle of nonstationary phase. If time permits, we may discuss a potential application of this version of the Kloosterman circle method to a proof of a strong asymptotic local-global principle for certain Kleinian sphere packings.

## Ramesh Sreekantan : Cycles on Abelian surfaces

- Number Theory ( 168 Views )In this talk we use generalizations of classical geometric constructions of Kummer and Humbert to construct new higher Chow cycles on Abelian surfaces and K3 surfaces over p-adic local fields, generalising some work of Collino. The existence of these cycles is predicted by the poles of the local L-factor at p of the L-function of the Abelian surface. The techniques involve using some recent work of Bogomolov, Hassett and Tschinkel on the deformations of rational curves on K3 surfaces. As an application we use these cycles to prove an analogue of the Hodge-D-conjecture for Abelian surfaces.