Jerry Yu Fu : A density theorem towards p-adic monodromy
- Number Theory ( 456 Views )We investigate the $p$-adic monodromy of certain kinds of abelian varieties in $\mathcal{A}_{g}$ and prove a formal density theorem for the locus of deformations with big monodromy. Also, we prove that the small monodromy locus of the deformation space of a supersingular elliptic curve is $p$-adic nowhere dense. The approach is based on a congruence condition of $p$-divisible groups and transform of data between the Rapoport-Zink spaces and deformation spaces.
Rahul Krishna : A New Approach to Waldspurgers Formula.
- Number Theory ( 305 Views )I will present a new trace formula approach to Waldspurger's formula for toric periods of automorphic forms on $PGL_2$. The method is motivated by interpreting Waldspurger's result as a period relation on $SO_2 \times SO_3$, which leads to a strange comparison of relative trace formulas. I will explain the local results needed to carry out this comparison, and discuss some small progress towards extending these results to high rank orthogonal groups.
Jayce Robert Getz : Summation formula for spherical varieties
- Number Theory ( 267 Views )Braverman and Kazhdan, L. Lafforgue, Ngo, and Sakellaridis have pursued a set of conjectures asserting that analogues of the Poisson summation formula are valid for all spherical varieties. If proven, these conjectures imply the analytic continuation and functional equations of quite general Langlands L-functions (and thus, by converse theory, much of Langlands functoriality). I will explain techniques for proving the conjectures in special cases that include the first known case where the underlying spherical variety is not a generalized flag variety.
Junyan Xu : Bounds for certain families of character sums: how to obtain strong bounds with more exceptions from weak bounds with fewer exceptions
- Number Theory ( 231 Views )I will first introduce some generalities about exponential sums, in particular that square-root cancellation is expected for many algebraic character sums over the rational points of an algebraic variety over a finite field. I will then set the stage for my work: we consider a family of exponential sums, which in our case is parameterized by the rational points of a variety (the parameter space). Our task is to obtain a good bound on the number of exceptional ("bad") parameters for which square-root cancellations fail. Following an idea of Michael Larsen, we consider even moments of the family of exponential sums. If the summands are of certain product form, a transformation can be applied to produce another family of exponential sums (of the same type). If the summands are products of multiplicative characters composed with certain polynomial functions, a weak bound can then be applied to the character sums in this family (with few bad parameters), yielding bounds for the moments. We know from the theory of l-adic sheaves that the parameter space for the original family have a stratification by smooth varieties, which is uniform in some sense as long as the degrees of the characters and polynomials are bounded. Moreover, on each stratum the character sum behave in certain uniform way, so that we can talk about good and bad strata. The bounds on moments yield bounds on dimensions of bad strata, which in turn yield bounds on the number of bad parameters (in any box) of the original family. Though not optimal, the bounds already imply nontrivial Burgess bounds for forms, in joint work with Lillian Pierce.
Yunqing Tang : Picard ranks of reductions of K3 surfaces over global fields
- Number Theory ( 231 Views )For a K3 surface X over a number field with potentially good reduction everywhere, we prove that there are infinitely many primes modulo which the reduction of X has larger geometric Picard rank than that of the generic fiber X. A similar statement still holds true for ordinary K3 surfaces over global function fields. In this talk, I will present the proofs via the intersection theory on GSpin Shimura varieties and also discuss various applications. These results are joint work with Ananth Shankar, Arul Shankar, and Salim Tayou and with Davesh Maulik and Ananth Shankar.
Aleksander Horawa : Motivic action on coherent cohomology of Hilbert modular varieties
- Number Theory ( 229 Views )A surprising property of the cohomology of locally symmetric spaces is that Hecke operators can act on multiple cohomological degrees with the same eigenvalues. We will discuss this phenomenon for the coherent cohomology of line bundles on modular curves and, more generally, Hilbert modular varieties. We propose an arithmetic explanation: a hidden degree-shifting action of a certain motivic cohomology group (the Stark unit group). This extends the conjectures of Venkatesh, Prasanna, and Harris to Hilbert modular varieties.
Michael Harris : Chern classes of automorphic vector bundles
- Number Theory ( 226 Views )Holomorphic modular forms on the Shimura variety S(G) attached to the reductive group G can be interpreted naturally as sections of automorphic vector bundles: locally free sheaves that can be defined analytically by exploiting the structure of a Shimura variety as a quotient of a symmetric space. The construction can also be made algebraic, and in this way one gets a canonical functor from the tensor category of representations of a certain Levi subgroup K of G to the tensor category of vector bundles on S(G), and thus a homomorphism from the representation ring of K to K_0(S(G)). When S(G) is compact we determine how the image of this homomorphism behaves under Chern characters to Deligne cohomology and continuous l-adic cohomology. When S(G) is non-compact and of abelian type, we use perfectoid geometry to define Chern classes in the l-adic cohomology of the minimal compactification of S(G); these are analogous to the topological cohomology classes defined by Goresky and Pardon, using differential geometry. (Joint work with Helene Esnault.)
Jürgen Klüners : The negative Pell equation and the Cohen-Lenstra heuristic
- Number Theory ( 218 Views )For a (squarefree) integer d the negative Pell equation is given by: X^2 - d Y^2 = -1. It is easy to see that this equation has no solution over the integers, if d is negative or d is congruent to 3 modulo 4. In this talk we would like to study the asymptotic behavior of integers d such that this equation is solvable. This question is related to the behavior of the class group of the quadratic field generated by a square root of d. The distribution of those class groups is described by the Cohen-Lenstra heuristics.
Damaris Schindler : Manins conjecture for certain smooth hypersurfaces in biprojective space
- Number Theory ( 210 Views )So far, the circle method has been a very useful tool to prove many cases of Manin's conjecture on the number of rational points of bounded anticanonical height on Fano varieties. Work of B. Birch back in 1962 establishes this for smooth complete intersections in projective space as soon as the number of variables is large enough depending on the degree and number of equations. In this talk we are interested in subvarieties of biprojective space. There is not much known so far, unless the underlying polynomials are of bidegree (1,1) or (1,2). In this talk we present recent work which combines the circle method with the generalised hyperbola method developed by V. Blomer and J. Bruedern. This allows us to verify Manin's conjecture for certain smooth hypersurfaces in biprojective space of general bidegree.
Shuichiro Takeda : The Langlands quotient theorem for symmetric spaces
- Number Theory ( 203 Views )We will discuss how to generalize the Langlands quotient theorem to symmetric spaces. The key idea is to generalize so-called Casselmans criterion for temperedness to the context of symmetric spaces by using the work of Kato-Takano.
Jianqiang Zhao : Renormalizations of multiple zeta values
- Number Theory ( 159 Views )Calculating multiple zeta values at arguments of mixed signs in a way that is compatible with both the quasi-shuffle product and the meromorphic continuation, is commonly referred to as the renormalization problem for multiple zeta values. In this talk, we consider the set of all solutions to this problem and provide a framework for comparing its elements in terms of a free and transitive action of a particular subgroup of the group of characters of the quasi-shuffle Hopf algebra. This provides a transparent way of relating different solutions at non-positive values, which answers an open question in the recent literature. This is a joint work with Ebrahimi-Fard, Manchon and Singer.
Majid Hadian : On a Motivic Method in Diophantine Geometry
- Number Theory ( 140 Views )By studying universal motivic unipotent representations of fundamental group of varieties and comparing their different realizations, we combine Kim's recent method in Diophantine geometry with Deligne-Goncharov's theory of motivic fundamental groups to develop a machinery for approaching Diophantine problems concerning integral points.
Freydoon Shahidi : Local Langlands correspondence and the exterior and symmetric square root numbers for GL(n)
- Number Theory ( 138 Views )We will discuss the notion of Artin root numbers attached to an n-dimensional continuous Frobenius-semisimple complex representation of the Weil-Deligne group and show their equalities with those defined by Langlands-Shahidi method through local Langlands correspondence for GL(n) and the exterior and symmetric square representation of the L-group GL(n,C) of GL(n). The proof is a robust deformation argument using local-global techniques, complemented with suitable asymptotic expansions for partial Bessel functions inspired by certain generalized Shalika germ expansions of Jacquet and Ye. This is a joint work with J. Cogdell and T.-L. Tsai.
Pam Gu : A family of period integrals related to triple product $L$-functions
- Number Theory ( 131 Views )Let $F$ be a number field with ring of adeles $\mathbb{A}_F$. Let $r_1,r_2,r_3$ be a triple of positive integers and let $\pi:=\otimes_{i=1}^3\pi_i$ where the $\pi_i$ are all cuspidal automorphic representations of $\mathrm{GL}_{r_i}(\mathbb{A}_F)$. We denote by $L(s,\pi, \otimes^3)=L(s, \pi_1\times \pi_2 \times \pi_3)$ the corresponding triple product $L$-function. It is the Langlands $L$-function defined by the tensor product representation $\otimes^3:{}^L(\mathrm{GL}_{r_1} \times \mathrm{GL}_{r_2} \times \mathrm{GL}_{r_3}) \to \mathrm{GL}_{r_1r_2r_3}(\mathbb{C})$. In this talk I will present a family of Eulerian period integrals, which are holomorphic multiples of the triple product -function in a domain that nontrivially intersects the critical strip. We expect that they satisfy a local multiplicity one statement and a local functional equation. This is joint work with Jayce Getz, Chun-Hsien Hsu and Spencer Leslie.
William D. Banks : Consecutive primes and Beatty sequences
- Number Theory ( 110 Views )Beatty sequences are generalized arithmetic progressions which have been studied intensively in recent years. Thanks to the work of Vinogradov, it is known that every Beatty sequence S contains "appropriately many" prime numbers. For a given pair of Beatty sequences S and T, it is natural to wonder whether there are "appropriately many" primes in S for which the next larger prime lies in T. In this talk, I will show that this is indeed the case if one assumes a certain strong form of the Hardy-Littlewood conjectures. This is recent joint work with Victor Guo.
Silas Johnson : Counting Functions, Mass Formulas, and Heuristics for Number Fields
- Number Theory ( 105 Views )The Malle-Bhargava heuristics give asymptotic predictions for the density of number fields of bounded discriminant with a given Galois group G, in terms of the number of G-extensions of p-adic fields Q_p. These heuristics can also be applied when the discriminant is replaced by any of a wide variety of other counting functions. Ill discuss how some of these alternate counting functions are built, the idea of global mass formulas, and some cases in which the heuristic predictions can be compared to known results.
Spencer Leslie : Relative Langlands and endoscopy
- Number Theory ( 0 Views )Spherical varieties play an important role in the study of periods of automorphic forms. But very closely related varieties can lead to very distinct arithmetic problems. Motivated by applications to relative trace formulas, we discuss the natural question of distinguishing different forms of a given spherical variety in arithmetic settings, giving a solution for symmetric varieties. It turns out that the answer is intimately connected with the construction of the dual Hamiltonian variety associated with the symmetric variety by Ben-Zvi, Sakellaridis, and Venkatesh. I will explain the source of these questions in the theory of endoscopy for symmetric varieties, with application to the (pre-)stabilization of relative trace formulas.