Pam Gu : A family of period integrals related to triple product $L$-functions
- Uploaded by schrett ( 16 Views )Let $F$ be a number field with ring of adeles $\mathbb{A}_F$. Let $r_1,r_2,r_3$ be a triple of positive integers and let $\pi:=\otimes_{i=1}^3\pi_i$ where the $\pi_i$ are all cuspidal automorphic representations of $\mathrm{GL}_{r_i}(\mathbb{A}_F)$. We denote by $L(s,\pi, \otimes^3)=L(s, \pi_1\times \pi_2 \times \pi_3)$ the corresponding triple product $L$-function. It is the Langlands $L$-function defined by the tensor product representation $\otimes^3:{}^L(\mathrm{GL}_{r_1} \times \mathrm{GL}_{r_2} \times \mathrm{GL}_{r_3}) \to \mathrm{GL}_{r_1r_2r_3}(\mathbb{C})$. In this talk I will present a family of Eulerian period integrals, which are holomorphic multiples of the triple product -function in a domain that nontrivially intersects the critical strip. We expect that they satisfy a local multiplicity one statement and a local functional equation. This is joint work with Jayce Getz, Chun-Hsien Hsu and Spencer Leslie.
Xiao (Griffin) Wang : Multiplicative Hitchin Fibration and Fundamental Lemma
- Uploaded by schrett ( 22 Views )Given a reductive group 𝐺 and some auxiliary data, one has the Hitchin fibration associated with the adjoint action of 𝐺 on Lie(𝐺), which is successfully used by B. C. Ngô to prove the endoscopic fundamental lemma for Lie algebras. Following the same idea, there is a group analogue called the multiplicative Hitchin fibration by replacing the Lie algebra with reductive monoids, and one can hope to directly prove the fundamental lemma at group level. This project is almost complete and we report the results so far. There are many new features that are not present in the additive case, among which is a pleasant surprise that there might be some strata in the support theorem that are not explained by endoscopy.