## Gene Kopp : The Shintani-Faddeev modular cocycle

- Uploaded by schrett ( 5 Views )We ask the question, "how does the infinite q-Pochhammer symbol transform under modular transformations?" and connect the answer to that question to the Stark conjectures. The infinite q-Pochhammer symbol transforms by a generalized factor of automorphy, or modular 1-cocycle, that is analytic on a cut complex plane. This "Shintani-Faddeev modular cocycle" is an SL_2(Z)-parametrized family of functions generalizing Shintani's double sine function and Faddeev's noncompact quantum dilogarithm. We relate real multiplication values of the Shintani-Faddeev modular cocycle to exponentials of certain derivative L-values, conjectured by Stark to be algebraic units generating abelian extensions of real quadratic fields.

## Kim Klinger-Logan : A shifted convolution problem arising from physics

- Uploaded by schrett ( 11 Views )Physicists Green, Russo, and Vanhove have discovered solution to differential equations involving automorphic forms appear at the coefficients to the 4-graviton scattering amplitude in type IIB string theory. Specifically, for \Delta the Laplace-Beltrami operator and E_s(g) a Langlands Eisenstein series, solutions f(g) of (\Delta-\lambda) f(g) = E_a(g) E_b(g) for a and b half-integers on certain moduli spaces G(Z)\G(R)/K(R) of real Lie groups appear as coefficients to the analytic expansion of the scattering amplitude. We will briefly discuss different approaches to finding solutions to such equations and focus on a shifted convolution sum of divisor functions which appears as the Fourier modes associated to the homogeneous part of the solution. Initially, it was thought that, when summing over all Fourier modes, the homogeneous solution would vanish but recently we have found an exciting error term. This is joint work with Stephen D. Miller, Danylo Radchenko and Ksenia Fedosova.

## Xiao (Griffin) Wang : Multiplicative Hitchin Fibration and Fundamental Lemma

- Uploaded by schrett ( 21 Views )Given a reductive group 饾惡 and some auxiliary data, one has the Hitchin fibration associated with the adjoint action of 饾惡 on Lie(饾惡), which is successfully used by B. C. Ng么 to prove the endoscopic fundamental lemma for Lie algebras. Following the same idea, there is a group analogue called the multiplicative Hitchin fibration by replacing the Lie algebra with reductive monoids, and one can hope to directly prove the fundamental lemma at group level. This project is almost complete and we report the results so far. There are many new features that are not present in the additive case, among which is a pleasant surprise that there might be some strata in the support theorem that are not explained by endoscopy.

## Pam Gu : A family of period integrals related to triple product $L$-functions

- Uploaded by schrett ( 15 Views )Let $F$ be a number field with ring of adeles $\mathbb{A}_F$. Let $r_1,r_2,r_3$ be a triple of positive integers and let $\pi:=\otimes_{i=1}^3\pi_i$ where the $\pi_i$ are all cuspidal automorphic representations of $\mathrm{GL}_{r_i}(\mathbb{A}_F)$. We denote by $L(s,\pi, \otimes^3)=L(s, \pi_1\times \pi_2 \times \pi_3)$ the corresponding triple product $L$-function. It is the Langlands $L$-function defined by the tensor product representation $\otimes^3:{}^L(\mathrm{GL}_{r_1} \times \mathrm{GL}_{r_2} \times \mathrm{GL}_{r_3}) \to \mathrm{GL}_{r_1r_2r_3}(\mathbb{C})$. In this talk I will present a family of Eulerian period integrals, which are holomorphic multiples of the triple product -function in a domain that nontrivially intersects the critical strip. We expect that they satisfy a local multiplicity one statement and a local functional equation. This is joint work with Jayce Getz, Chun-Hsien Hsu and Spencer Leslie.

## Ngo Bao Chau : On the generalized Hitchin fibration and regular quotient

- Uploaded by schrett ( 35 Views )## Matthew Litman : Markoff-type K3 Surfaces: Local and Global Finite Orbits

- Uploaded by schrett ( 43 Views )Markoff triples were introduced in 1879 and have a rich history spanning many branches of mathematics. In 2016, Bourgain, Gamburd, and Sarnak answered a long standing question by showing there exist infinitely many composite Markoff numbers. Their proof relied on showing the connectivity for an infinite family of graphs associated to Markoff triples modulo p for infinitely many primes p. In this talk we discuss what happens for the projective analogue of Markoff triples, that is surfaces W in P^1 x P^1 x P^1 cut out by the vanishing of a (2,2,2)-form that admit three non-commuting involutions and are fixed under coordinate permutations and double sign changes. Inspired by the work of B-G-S we investigate such surfaces over finite fields, specifically their orbit structure under their automorphism group. For a specific one-parameter subfamily W_k of such surfaces, we construct finite orbits in W_k(C) by studying small orbits that appear in W_k(F_p) for many values of p and k. This talk is based on joint work with E. Fuchs, J. Silverman, and A. Tran.

## Yeansu Kim : CLASSIFICATION OF DISCRETE SERIES REPRESENTATIONS AND ITS APPLICATIONS ON THE GENERIC LOCAL LANGLANDS CORRESPONDENCE FOR ODD GSPIN GROUPS

- Uploaded by schrett ( 42 Views )The classification of discrete series is one main subject in Langlands program with numerous applications. We first explain the result on the classification of discrete series of odd GSpin groups, generalizing the M艙glin-Tadi 虂c classification for classical groups. Note that our approach will give alternate proof for classical groups. This is a joint work with Ivan Mati 虂c. We also explain its application on the generic local Langlands correspondence via Langlands-Shahidi method. If time permits, we will explain possible generalization of those to other groups, which is work in progress

## Jerry Yu Fu : A density theorem towards p-adic monodromy

- Uploaded by schrett ( 96 Views )We investigate the $p$-adic monodromy of certain kinds of abelian varieties in $\mathcal{A}_{g}$ and prove a formal density theorem for the locus of deformations with big monodromy. Also, we prove that the small monodromy locus of the deformation space of a supersingular elliptic curve is $p$-adic nowhere dense. The approach is based on a congruence condition of $p$-divisible groups and transform of data between the Rapoport-Zink spaces and deformation spaces.

## Huajie Li : On an infinitesimal variant of Guo-Jacquet trace formulae

- Uploaded by schrett ( 58 Views )A well-known theorem of Waldspurger relates central values of automorphic L-functions for GL(2) to automorphic period integrals over non-split tori. His result was reproved by Jacquet via the comparison of relative trace formulae. Guo-Jacquet抯 conjecture aims to generalise Waldspurger抯 result as well as Jacquet抯 approach to higher dimensions. In this talk, we shall first recall the background of Guo-Jacquet trace formulae. Then we shall focus on an infinitesimal variant of these formulae and try to explain several results on the local comparison of most terms. Our infinitesimal study is expected to be relevant to the study of geometric sides of the original Guo-Jacquet trace formulae.

## Edna Jones : The Kloosterman circle method and weighted representation numbers of positive definite quadratic forms

- Uploaded by schrett ( 48 Views )We develop a version of the Kloosterman circle method with a bump function that is used to provide asymptotics for weighted representation numbers of positive definite integral quadratic forms. Unlike many applications of the Kloosterman circle method, we explicitly state some constants in the error terms that depend on the quadratic form. This version of the Kloosterman circle method uses Gauss sums, Kloosterman sums, Sali茅 sums, and a principle of nonstationary phase. If time permits, we may discuss a potential application of this version of the Kloosterman circle method to a proof of a strong asymptotic local-global principle for certain Kleinian sphere packings.

## Benedict Morrissey : Regular quotients and Hitchin fibrations (joint work with Ng么 B.-C.)

- Uploaded by schrett ( 59 Views )Orbital integrals for the Lie algebra can be analyzed using the Hitchin fibration. In turn the Hitchin fibration can be analyzed via the morphism g^{reg} ----> g//G from the regular elements of the Lie algebra, to the GIT quotient by the adjoint action. In trying to generalize this story by replacing the action of G on g by the action of G on some sufficiently nice variety M, we must replace the GIT quotient with what we call the regular quotient. This talk will look at the reasons for this, and the difference between the GIT and regular quotients in the case of G acting on G by conjugation (when the derived group of G is not simply connected), G acting on the commuting scheme, and G acting on the Vinberg monoid.

## Rafah Hajjar Munoz : On the residually indistinguishable case of Ribet鈥檚 lemma

- Uploaded by schrett ( 96 Views )Ribet鈥檚 method describes a way to construct a certain extension of fields from the existence of a suitable modular form. To do so, we consider the Galois representation of an appropriate cuspform, which gives rise to a cohomology class that cuts out our desired extension. The process of obtaining a cohomology class from such a representation is usually known as Ribet鈥檚 lemma. Several generalizations of this lemma have been stated and proved during the last decades, but the vast majority of them makes the assumption that the representation is residually distinguishable, meaning that the characters of its residual decomposition are non-congruent modulo the maximal ideal. However, recent applications of Ribet鈥檚 method, such as for the proof of the 2-part of the Brumer-Stark conjecture, have encountered the challenge that the representation we obtain does not satisfy this assumption. In my talk, I describe the limitations of the residually indistinguishable case and conjecture a new general version of Ribet鈥檚 lemma in this context, giving a proof in some particular cases.

## Evangelia Gazaki : Torsion phenomena for zero-cycles on a product of curves over a number field

- Uploaded by schrett ( 155 Views )For a smooth projective variety X over an algebraic number field a conjecture of Bloch and Beilinson predicts that the kernel of the Abel-Jacobi map of X is a torsion group. When X is a curve, this follows by the Mordell-Weil theorem. In higher dimensions however there is hardly any evidence for this conjecture. In this talk I will focus on the case when X is a product of smooth projective curves and construct infinitely many nontrivial examples that satisfy a weaker form of the Bloch-Beilinson conjecture. This relies on a recent joint work with Jonathan Love.

## Aleksander Horawa : Motivic action on coherent cohomology of Hilbert modular varieties

- Uploaded by schrett ( 143 Views )A surprising property of the cohomology of locally symmetric spaces is that Hecke operators can act on multiple cohomological degrees with the same eigenvalues. We will discuss this phenomenon for the coherent cohomology of line bundles on modular curves and, more generally, Hilbert modular varieties. We propose an arithmetic explanation: a hidden degree-shifting action of a certain motivic cohomology group (the Stark unit group). This extends the conjectures of Venkatesh, Prasanna, and Harris to Hilbert modular varieties.

## Jonathan P. Wang : Derived Satake equivalence for Godement-Jacquet monoids

- Uploaded by schrett ( 195 Views )Godement-Jacquet use the Schwartz space of n-by-n matrices to construct the standard L-function for GL_n. Ben-Zvi, Sakellaridis and Venkatesh conjecture that the local unramified part of this theory can be categorified to an equivalence between an 'analytic' category of constructible sheaves and a 'spectral' category of dg modules. In this talk I will explain the proof of this equivalence and some of its properties. I will also discuss connections to conjectures of Braverman-Kazhdan on constructions of general automorphic L-functions. This is joint work with Tsao-Hsien Chen (in preparation).

## David Schwein : Recent progress on the formal degree conjecture

- Uploaded by schrett ( 187 Views )The local Langlands correspondence is a dictionary between representations of two kinds of groups: reductive p-adic groups (such as the general linear group) and the absolute Galois groups of p-adic fields. One entry in the dictionary is a conjectural formula of Hiraga, Ichino, and Ikeda for the size of a representation of a p-adic group, its "formal degree", in terms of the corresponding representation of a Galois group. In this talk, after reviewing the broad shape of p-adic representation theory, I'll explain why the conjecture is true for almost all supercuspidals, the fundamental building blocks of the subject.

## Zhilin Luo : Bias of root numbers for Hilbert new forms of cubic level

- Uploaded by schrett ( 129 Views )We express the bias of global root numbers of Hilbert new forms of cubic level via special values of Dedekind L-functions attached to CM extensions determined by the level. In particular, our formula includes the case when weight 2 appears. We establish the formula by 1) a limit form of Jacquet-Zagier trace formula on PGL_2 associated to certain not necessarily integrable test functions at Archimedean places (when weight 2 occurs), and 2) showing the meromorphic continuation of certain Dirichlet series with coefficients given by special value of Dedekind L-functions via spectral side of the Jacquet-Zagier trace formula. This is a joint work with Q. Pi and H. Wu. arXiv: 2110.08310.

## William Sokurski : Fourier operators on GL(2) for odd Adjoint powers

- Uploaded by schrett ( 134 Views )Recently A. Braverman, D. Kazhdan, and L. Lafforgue have interpreted Langlands' functoriality in terms of a generalized harmonic analysis on reductive groups that requires the existence of new spaces of functions and an associated, generally non-linear, involutive Fourier transform. This talk will discuss some of these objects involved in the local p-adic situation, after introducing some ideas and basic constructions involved. Specifically, the local Fourier transforms have a nice interpretation in terms of their spectral decomposition giving the gamma factors that appear in functional equations of L functions, which, in the standard case allows one to write down the epsilon factors attached to supercuspidal representations as non-abelian Gauss sums. For G=GL(2), we use the local Langlands correspondence to provide L and epsilon factors for odd adjoint power transfers and use this to interpret the Adjoint power Fourier-transform such that its spectral decomposition on supercuspidal representations is given explicitly by certain non-abelian Kloosterman sums, which we use to give a form of the Fourier operator.

## Omer Offen : On the distinction problem of parabolically induced representations for Galois symmetric pairs

- Uploaded by schrett ( 129 Views )Let G be the group of rational points of a linear algebraic group over a local field. A representation of G is distinguished by a subgroup H if it admits a non-zero H-invariant linear form. A Galois symmetric pair (G,H) is such that H=Y(F) and G=Y(E) where E/F is a quadratic extension of local fields and Y is a reductive group defined over F. In this talk we show that for a Galois symmetric pair, often the necessary condition for H-distinction of a parabolically induced representation, emerging from the geometric lemma of Berenstein-Zelevinsky, are also sufficient. In particular, we obtain a characterization of H-distinguished representations induced from cuspidal in terms of distinction of the inducing data. We explicate these results further when Y is a classical group and point out some global applications for Galois distinguished automorphic representations of SO(2n+1). This is joint work with Nadir Matringe.

## Rahul Dalal : Counting level-1, quaternionic automorphic representations on G2

- Uploaded by schrett ( 120 Views )Quaternionic automorphic representations are one attempt to generalize to other groups the special place holomorphic modular forms have among automorphic representations of GL2. Like holomorphic modular forms, they are defined by having their real component be one of a particularly nice class (in this case, called quaternionic discrete series). We count quaternionic automorphic representations on the exceptional group G2 by developing a G2 version of the classical Eichler-Selberg trace formula for holomorphic modular forms. There are two main technical difficulties. First, quaternionic discrete series come in L-packets with non-quaternionic members and standard invariant trace formula techniques cannot easily distinguish between discrete series with real component in the same L-packet. Using the more modern stable trace formula resolves this issue. Second, quaternionic discrete series do not satisfy a technical condition of being "regular", so the trace formula can a priori pick up unwanted contributions from automorphic representations with non-tempered components at infinity. Applying some computations of Mundy, this miraculously does not happen for our specific case of quaternionic representations on G2. Finally, we are only studying level-1 forms, so we can apply some tricks of Chenevier and Ta茂bi to reduce the problem to counting representations on the compact form of G2 and certain pairs of modular forms. This avoids involved computations on the geometric side of the trace formula.

## Manish Mishra : Self-dual cuspidal representations

- Uploaded by schrett ( 156 Views )Let F be a non-archimedean local field (such as 鈩歘p). The Langlands philosophy says that the arithmetic of F is intimately related to the category R(G) of smooth complex representations of G(F) where G denotes a reductive F-group (for example the general linear group). The building blocks of R(G) are the "supercuspidal" representations of G(F). I will define this term in the talk. The category R(G) comes equipped with an involution - the "contragradient" or the "dual". The supercuspidal representations of G(F) which are self-dual are of considerable interest in the subject. In this talk, I will talk about a joint work with Jeff Adler about the existence of supercuspidals and self-dual supercuspidals. Specifically, we show that G(F) always admits supercuspidal representations. Under some mild hypotheses on G, we determine precisely when G(F) admits self-dual supercuspidal representations. These results are obtained from analogous results for finite reductive groups which I will also talk about.

## Neelam Saikia : Frobenius Trace Distributions for Gaussian Hypergeometric Functions

- Uploaded by schrett ( 273 Views )In the 1980鈥檚, Greene defined hypergeometric functions over finite fields using Jacobi sums. The framework of his theory establishes that these functions possess many properties that are analogous to those of the classical hypergeometric series studied by Gauss and Kummer. These functions have played important roles in the study of Ap 虂ery-style supercongruences, the Eichler-Selberg trace formula, Galois representations, and zeta-functions of arithmetic varieties. In this talk we discuss the distributions (over large finite fields) of natural families of these functions. For the 2F1 functions, the limiting distribution is semicircular, whereas the distribution for the 3F2 functions is the more exotic Batman distribution.

## Dick Hain : Hecke actions on loops and periods of iterated itegrals of modular forms

- Uploaded by root ( 194 Views )Hecke operators act on many invariants associated to modular curves and their generalizations. For example, they act on modular forms and on cohomology groups of modular curves. In each of these cases, they generate a semi-simple, commutative algebra. In the first part of this talk, I will recall (in friendly, elementary, geometric terms) what Hecke operators are and how they act on the standard invariants. I will then show that they also act on loops in modular curves (aka, conjugacy classes in modular groups). In this case, the Hecke operators generate a non-commutative subalgebra of the vector space generated by the conjugacy classes, which leads to a very natural non-commutative generalization of the classical Hecke algebra. In the second part of the talk will discuss why one might want do construct such a Hecke action. As a prelude to this, I will explain why this Hecke action commutes with the natural action of the absolute Galois group after taking profinite completions. And, in the unlikely event that I have sufficient time, I will also explain how (after taking the appropriate completion) this Hecke action is also compatible with Hodge theory.