## Jason Polak : Exposing relative endoscopy

- Algebraic Geometry ( 145 Views )For a reductive algebraic group G with Lie algebra g and involution \theta we define relative orbital integrals with respect to G acting on the -1 eigenspace of \theta on g. We prove some fundamental lemmas relating these orbital integrals to relative orbital integrals on smaller groups, providing the first example of a theory of relative endoscopy in our setting

## Richard Rimanyi : Thom polynomials

- Algebraic Geometry ( 143 Views )In certain situations global topology may force singularities. For example, the topology of the Klein bottle forces self-intersections when mapped into 3-space. Any map of the projective plane must have at least cusp singularities when mapped into the plane. The topology of a manifold may force any differential form on it to degenerate at certian points. In a family of vector bundles over a complex curve some must degenerate to a non-stable bundle (in the GIT sense), depending on the topology of the family. In a family of vector bundle maps---arranged according to a directed graph (quiver)---some may be forced to degenerate. In families of linear spaces some have special incidence with some other fixed ones (Schubert calculus). These degenerations are governed by a unified notion in equivariant cohomology, the Thom polynomial of "singularities". In the lecture I will review Thom polynomials, computational strategies (interpolation, localization, Grobner basis), show examples and applications.

## Dick Hain : What is an algebraic group?

- Algebraic Geometry ( 120 Views )Algebraic groups are important in algebraic and arithmetic
geometry. This talk will be a general introduction to them. I will
discuss some basic example (elliptic curves, **GL _{n}**, ...) and then
introduce linear algebraic groups and affine algebraic groups. There
will be lots of examples, which will help explain why
they are important.

## Christopher O'Neill : Shifting numerical monoids

- Algebraic Geometry ( 109 Views )A numerical monoid is a subset of the nonnegative integers that is closed under addition. Given a numerical monoid S, consider the shifted monoid S_n obtained by adding n to each minimal generator of S. In this talk, we examine minimal relations between the generators of S_n when n is sufficiently large, culminating in a description that is periodic in the shift parameter n. We also explore several consequences, some old and some new, in the realm of factorization theory. No background in numerical monoids or factorization theory is assumed for this talk.