HaoHua Deng : Mumford-Tate Groups and the Hodge locus of period maps
- Algebraic Geometry ( 276 Views )Mumford-Tate groups together with their associated Mumford-Tate domains, as their definitions, tell rich information about Hodge classes. While Abelian varieties with complex multiplication serve as (relatively simple) examples, the study on Mumford-Tate groups in general cases could be much more complicated. In this expository talk I will briefly summarize the literature in the view of algebraic geometry and representation theory. The relation between Mumford-Tate groups and the Hodge-generic properties of period maps will be emphasized. I will also talk about some recent applications, including part of the latest results on the distribution of Hodge locus worked out by Baldi-Klingler-Ullmo. The talk is supposed to be accessible for graduate students in algebraic geometry or related fields.
Nils Bruin : Prym varieties of genus four curves
- Algebraic Geometry ( 257 Views )Many arithmetic properties of hyperbolic curves become apparent from embeddings into abelian varieties, in particular their Jacobians. For special curves, particularly those that arise as unramified double covers of another curve (of genus g), the Jacobian variety itself is decomposable. This leads to Prym varieties. These are principally polarized abelian varieties of dimension g-1. Having an explicit description of these varieties is an essential ingredient in many computational methods. We discuss an explicit construction for g equal to 4. This is joint work with Emre Can Sertoz.
Alex Perry : Derived categories of cubic fourfolds and their geometric applications
- Algebraic Geometry ( 225 Views )A fundamental problem in algebraic geometry is to determine whether a given algebraic variety is birational to projective space. This is most prominently open for cubic fourfolds, i.e. hypersurfaces defined by a cubic polynomial in a five-dimensional projective space. A decade ago, Kuznetsov suggested an approach to this problem using the derived category of coherent sheaves. I will explain recent applications of this perspective to fundamental questions in hyperkahler geometry and Hodge theory, which in turn shed light on the original question about cubic fourfolds.
Max Lieblich : K3 surfaces in positive characteristic
- Algebraic Geometry ( 216 Views )I will describe some aspects of the geometry of K3 surfaces in positive characteristic, including derived-category replacements for the classical Torelli theorem, supersingular analogues of twistor spaces, and some consequences for the arithmetic of certain elliptic curves over function fields. Some of the work described is joint with Daniel Bragg, and some is joint with Martin Olsson.
David Morrison : Normal functions and disk counting
- Algebraic Geometry ( 209 Views )In 1990, Candelas, de la Ossa, Green, and Parkes used the then-new technique of mirror symmetry to predict the number of rational curves of each fixed degree on a quintic threefold. The techniques used in the prediction were subsequently understood in Hodge-theoretic terms: the predictions are encoded in a power-series expansion of a quantity which describes the variation of Hodge structures, and in particular this power-series expansion is calculated from the periods of the holomorphic three-form on the quintic, which satisfy the Picard-- Fuchs differential equation. In 2006, Johannes Walcher made an analogous prediction for the number of holomorphic disks on the complexification of a real quintic threefold whose boundaries lie on the real quintic, in each fixed relative homology class. (The predictions were subsequently verified by Pandharipande, Solomon, and Walcher.) This talk will report on recent joint work of Walcher and the speaker which gives the Hodge- theoretic context for Walcher's predictions. The crucial physical quantity "domain wall tension" is interpreted as a Poincar\'e normal function, that is, a holomorphic section of the bundle of Griffiths intermediate Jacobians. And the periods are generalized to period integrals of the holomorphic three-form over appropriate 3-chains (not necessarily closed), which leads to a generalization of the Picard--Fuchs equations.
Julie Rana : Moduli of general type surfaces
- Algebraic Geometry ( 203 Views )It has been 30 years since Koll\ar and Shepherd-Barron published their groundbreaking paper describing a compactification of Giesekers moduli space of surfaces of general type. As with all compactifications, the work raised natural questions. What is the structure of these moduli spaces and the boundary in particular? What sorts of singularities might we expect to obtain? What types of surfaces give rise to divisors in the moduli space, and are these divisors smooth? We discuss general results bounding types of Wahl singularities, and use them to address these questions in the context of Horikawa-type surfaces.
Jeff Achter : Divisibility of the number of points on Jacobians
- Algebraic Geometry ( 202 Views )Given an elliptic curve over a finite field, one might reasonably ask for the chance that it has a rational point of order $\ell$. More generally, what is the chance that a curve drawn from a family over a finite field has a point of order $\ell$ on its Jacobian? The answer is encoded in an $\ell$-adic representation associated to the family in question. In this talk, I'll answer this question for hyper- or trielliptic curves, and give some results concerning an arbitrary family of curves. ** Keeping in mind what you said about the audience, I'll focus on the geometric and topological ideas.
Chad Schoen : A family of surfaces constructed from genus 2 curves
- Algebraic Geometry ( 198 Views )This talk is about complex analytic geometry, the field of mathematics concerned with complex manifolds and more generally with complex analytic spaces. The "curves" of the title are compact Riemann surfaces and the "surfaces" in the title are compact complex manifolds of dimension 2 over the complex numbers (and hence dimension 4 over the real numbers). The talk will explore the problem of constructing two dimensional complex manifolds by deforming known complex analytic spaces. It will focus on a single example. The talk should be quasi-accessible to anyone who has courses in Riemann surfaces and algebraic topology.
Izzet Coskun : Brill-Noether Theorems for moduli spaces of sheaves on surfaces
- Algebraic Geometry ( 188 Views )In this talk, I will discuss the problem of computing the cohomology of the general sheaf in a moduli space of sheaves on a surface. I will concentrate on the case of rational and K3 surfaces. The case of rational surfaces is joint work with Jack Huizenga and the case of K3 surfaces is joint work with Howard Nuer and Kota Yoshioka.
John Swallow : Galois module structure of Galois cohomology
- Algebraic Geometry ( 183 Views )NOTE SEMINAR TIME: NOON!! Abstract: Let p be a prime number, F a field containing a primitive pth root of unity, and E/F a cyclic extension of degree p, with Galois group G. Let G_E be the absolute Galois group of E. The cohomology groups H^i(E,Fp)=Hî(G_E,Fp) possess a natural structure as FpG-modules and decompose into direct sums of indecomposables. In the 1960s Boreviè and Faddeev gave decompositions of E^*/E^*p -- the case i=1 -- for local fields. We describe the case i=1 for arbitrary fields, and then, using the Bloch-Kato Conjecture, we also determine the case i>1. No small surprise arises from the fact that there exist indecomposable FpG-modules which never appear in these module decompositions. We give several consequences of these results, notably a generalization of the Schreier formula for G_E, connections with Demu¹kin groups, and new families of pro-p-groups that cannot be realized as absolute Galois groups. These results have been obtained in collaboration with D. Benson, J. Labute, N. Lemire, and J. Mináè.
Romyar Sharifi : A modular interpretation of a pairing on cyclotomic units
- Algebraic Geometry ( 177 Views )Class groups of cyclotomic fields have long been of central interest in number theory. We consider elements of these class groups that arise as values of a cup product pairing on cyclotomic units. These pairing values yield information on a wealth of algebraic objects, but any analytic interpretation of them was heretofore unknown. We will describe how, conjecturally, modular representations can be used to relate the pairing values to p-adic L-values of cusp forms.
Remy van Dobben de Bruyn : A variety that cannot be dominated by one that lifts.
- Algebraic Geometry ( 176 Views )Abstract: In the sixties, Serre constructed a smooth projective variety in characteristic p that cannot be lifted to characteristic 0. If a variety does not lift, a natural question is whether some variety related to it does. We construct a smooth projective variety that cannot be rationally dominated by a smooth projective variety that lifts.
Rita Pardini : Linear systems on irregular varieties
- Algebraic Geometry ( 174 Views )
I will report on joint work M.A. Barja (UPC, Barcelona) and L. Stoppino (Universita' dell'Insubria, Como - Italy).
Given a generically finite map a:X--> A, where X is a smooth projective variety and A is an abelian variety, and given a line bundle L on X, we study the linear system |L+P|, where P is a general element of Pic^0(A). We prove that up to taking base change with a suitable multiplication map A-->A, the map given by |L+P| is independent of P and induces a factorization of the map a.
When L is the canonical bundle of X, this factorization is a new geometrical object intrinsically attached to the variety X.
The factorization theorem also allows us to improve the known Clifford-Severi and Castelnuovo type numerical inequalities for line bundles on X, under certain assumptions on the map a:X-->A.
A key tool in these proofs is the introduction of a real function, the continuous rank function, that also allows us to simplify considerably the proof of the general Clifford-Severi inequality.
Jesse Kass : What is the limit of a line bundle on a nonnormal variety
- Algebraic Geometry ( 164 Views )On a nonnormal variety, the limit of a family of line bundles is not always a line bundle. What is the limit? I will present an answer to this question and give some applications. If time permits, I will discuss connections with Néron models, autoduality, and recent work of R. Hartshorne and C. Polini.
Jayce Getz : Hilbert modular generating functions with coefficients in intersection homology
- Algebraic Geometry ( 162 Views )In a seminal Inventiones 1976 paper, Hirzebruch and Zagier produced a set of cycles on certain Hilbert modular surfaces whose intersection numbers are the Fourier coefficients of elliptic modular forms with nebentypus. Their result can be viewed as a geometric manifestation of the Naganuma lift from elliptic modular forms to Hilbert modular forms. We discuss a general analogue of this result where the real quadratic extension is replaced by an arbitrary quadratic extension of totally real fields. Our result can be viewed as a geometric manifestation of quadratic base change for GL_2 over totally real fields. (joint work with Mark Goresky).
Andrew Critch : Causality and Algebraic Geometry
- Algebraic Geometry ( 157 Views )Abstract: Science, and perhaps all learning, is the problem of inferring causal relationships from observations. It turns out that algebraic geometry can provide powerful intuition and methods applicable to causal inference. The relevant theory of graphical causal models is a major entry point to the budding field of algebraic statistics, where algebraic geometry meets statistical modeling, and this talk will give an introduction to it from the perspective of an algebraic geometer. I'll introduce some conceptual tools and methods that are peculiar to algebraic statistics, and work through an example such causal inference computation using the commutative algebra software Macaulay2. At the end I'll review some of my research on hidden Markov models and varieties, and their close connection to matrix product state models of quantum-entangled qubits.
Thomas Lam : First steps in affine Schubert calculus
- Algebraic Geometry ( 156 Views )I will explain some attempts to develop a theory of Schubert calculus on the affine Grassmannian. I will begin with the different descriptions of the (co)homology rings due to Bott, Kostant and Kumar, and Ginzburg. Then I will discuss the problems of finding polynomial representatives for Schubert classes and the explicit determination of structure constants in (co)homology.
Paul Johnson : Topology and combinatorics of Hilbert schemes of points on orbifolds
- Algebraic Geometry ( 151 Views )The Hilbert scheme of n points on C^2 is a smooth manifold of dimension 2n. The topology and geometry of Hilbert schemes have important connections to physics, representation theory, and combinatorics. Hilbert schemes of points on C^2/G, for G a finite group, are also smooth, and their topology is encoded in the combinatorics of partitions. When G is a subgroup of SL_2, the topology and combinatorics of the situation are well understood, but much less is known for general G. After outlining the well-understood situation, I will discuss some conjectures in the general case, and a combinatorial proof that their homology stabilizes.
Zhiwei Yun : Rigid local systems coming from automorphic forms
- Algebraic Geometry ( 151 Views )We will give a survey of recent progress on constructing local system over punctured projective lines using techniques from automorphic forms and geometric Langlands. Applications include solutions of particular cases of the inverse Galois problem and existence of motives with exceptional Galois groups.
Will Donovan : Noncommutative deformations and the birational geometry of 3-folds
- Algebraic Geometry ( 149 Views )I will speak about recent work with Michael Wemyss (arXiv:1309.0698), applying noncommutative deformation theory to study the birational geometry of 3-folds. I will give a brief introduction to noncommutative deformations, and explain how every flippable or floppable rational curve in a 3-fold has a naturally associated algebra of noncommutative deformations. This construction yields new information about the (commutative) geometry of the 3-fold, and provides a new tool to differentiate between flops. As a further application, we show how the noncommutative deformation algebra controls the homological properties of a floppable curve, relating a Fourier-Mukai flop-flop functor and a spherical twist about the universal family over the noncommutative deformation algebra. I will also explain work in progress applying this approach to other geometric situations, and to higher dimensions.
Alan Guo : Lattice point methods for combinatorial games
- Algebraic Geometry ( 142 Views )We encode arbitrary finite impartial combinatorial games in terms of lattice points in rational convex polyhedra. Encodings provided by these lattice games can be made particularly efficient for octal games, which we generalize to squarefree games. These encompass all heap games in a natural setting where the Sprague-Grundy theorem for normal play manifests itself geometrically. We provide polynomial-time algorithms for computing strategies for lattice games provided that they have a certain algebraic structure, called an affine stratification.
Emanuele Macri : MMP for moduli spaces of sheaves on K3 surfaces and Cone Conjectures
- Algebraic Geometry ( 142 Views )We report on joint work with A. Bayer on how one can use wall-crossing techniques to study the birational geometry of a moduli space M of Gieseker-stable sheaves on a K3 surface X. In particular: (--) We will give a "modular interpretation" for all minimal models of M. (--) We will describe the nef cone, the movable cone, and the effective cone of M in terms of the algebraic Mukai lattice of X. (--) We will establish the so called Tyurin/Bogomolov/Hassett-Tschinkel/Huybrechts/Sawon Conjecture on the existence of Lagrangian fibrations on M.
Sam Grushevsky : Stable cohomology of compactifications of the moduli spaces of abelian varieties
- Algebraic Geometry ( 136 Views )Cohomology of A_g, the moduli space of principally polarized complex g-dimensional abelian varieties, is the same as the cohomology of Sp(2g,Z). By Borel's result on group homology it turns out that for g>k the cohomology H^k(A_g) is independent of g - it is then called the stable cohomology of A_g. Similarly, the stable cohomology of the moduli space of curves was the subject of Mumford's conjecture, proven by Madsen and Weiss by topological methods. In a joint work with Klaus Hulek and Orsola Tommasi we show that the cohomology of the perfect cone toroidal compactification of A_g stabilizes, and compute some of this stable cohomology using algebro-geometric methods.
Chris Hall : Sequences of curves with growing gonality
- Algebraic Geometry ( 134 Views )Given a smooth irreducible complex curve $C$, there are several isomorphism invariants one can attach to $C$. One invariant is the genus of $C$, that is, the number of handles in the corresponding Riemann surface. A subtler invariant is the gonality of $C$, that is, the minimal degree of a dominant map from $C$ of $\mathbb{P}^1$. A lower bound for either invariant has diophantine consequences when $C$ can be defined over a number field, but the ability to give non-trivial lower bounds depends on how $C$ is presented. In this talk we will consider a sequence $C_1,C_2,\ldots$ of finite unramified covers of $C$ and give spectral criteria for the gonality of $C_n$ to tend to infinity.
Giulia Sacca : Compact Hyperkahler manifolds in algebraic geometry
- Algebraic Geometry ( 131 Views )Hyperkahler (HK) manifolds appear in many fields of mathematics, such as differential geometry, mathematical physics, representation theory, and algebraic geometry. Compact HK manifolds are one of the building blocks for algebraic varieties with trivial first Chern class and their role in algebraic geometry has grown immensely over the last 20 year. In this talk I will give an overview of the theory of compact HK manifolds and then focus on some of my work, including a recent joint work with R. Laza and C. Voisin.
Sam Payne : Boundary complexes and weight filtrations
- Algebraic Geometry ( 130 Views )The boundary complex of an algebraic variety is the dual complex of the boundary divisor in a compactification of a log resolution. I will present recent work showing that the homotopy type of this complex is independent of the choice of resolution and compactification, and give relations between these complexes and Deligne's weight filtration on singular cohomology.
Laure Flapan : Hodge Groups of Hodge Structures with Hodge Numbers (n,0,...,0,n)
- Algebraic Geometry ( 130 Views )One of the main tools available for proving certain cases of the Hodge conjecture for abelian varieties is to compute the Hodge groups of the weight-1 Hodge structures associated to these abelian varieties. Thus Hodge groups of abelian varieties have been extensively investigated. In this talk, we discuss generalizing these results about Hodge groups to arbitrary-weight Hodge structures with Hodge numbers (n,0, ,0,n), particularly when n is prime or twice a prime. These generalizations yield some new results about Hodge classes of 2p-dimensional abelian varieties.