## Yifeng Liu : Relative trace formulas and restriction problems for unitary groups

- Algebraic Geometry ( 208 Views )In this talk, I will introduce some new relative trace formulas toward the global Gan-Gross-Prasad conjecture for unitary groups, which generalize the trace formulas of Jacquet-Rallis and Flicker. In particular, I will state the corresponding conjecture of relative fundamental lemmas. A relation between the well-studied Jacquet-Rallis case the equal-rank case will also be discussed.

## Anders Buch : Quantum cohomology of isotropic Grassmannians

- Algebraic Geometry ( 177 Views )The (small) quantum cohomology ring of a homogeneous space is a deformation of the classical cohomology ring, which uses the three point, genus zero Gromov-Witten invariants as its structure constants. I will present structure theorems for the quantum cohomology of isotropic Grassmannians, including a quantum Pieri rule for multiplication with the special Schubert classes, and a presentation of the quantum ring over the integers with the special Schubert classes as the generators. These results are new even for the ordinary cohomology of isotropic Grassmannians, and are proved directly from the definition of Gromov-Witten invariants by applying classical Schubert calculus to the kernel and span of a curve. This is joint work with A. Kresch and H. Tamvakis.

## Parker Lowrey : Virtual Grothendieck-Riemann-Roch via derived schemes

- Algebraic Geometry ( 162 Views )The usefulness of the various Riemann-Roch formulas as computational tools is well documented in literature. Grothendieck-Riemann-Roch is a commutative diagram relating pullback in K-theory to the pullback of associated Chow invariants for locally complete intersection (l.c.i.) morphisms. We extend this notion to quasi-smooth morphisms between derived schemes, this is the "derived" analog of l.c.i. morphisms and it encompasses relative perfect obstruction theories. We will concentrate on the naturality of the construction from the standpoint of pure intersection theory and how it interacts with the virtual Gysin homomorphism defined by Behrend-Fantechi. Time permitting we will discuss the relationship with existing formulas, i.e., Ciocan-Fonanine, Kapranov, Fantechi, and Goettsche.

## Andrew Critch : Causality and Algebraic Geometry

- Algebraic Geometry ( 156 Views )Abstract: Science, and perhaps all learning, is the problem of inferring causal relationships from observations. It turns out that algebraic geometry can provide powerful intuition and methods applicable to causal inference. The relevant theory of graphical causal models is a major entry point to the budding field of algebraic statistics, where algebraic geometry meets statistical modeling, and this talk will give an introduction to it from the perspective of an algebraic geometer. I'll introduce some conceptual tools and methods that are peculiar to algebraic statistics, and work through an example such causal inference computation using the commutative algebra software Macaulay2. At the end I'll review some of my research on hidden Markov models and varieties, and their close connection to matrix product state models of quantum-entangled qubits.

## Thomas Lam : First steps in affine Schubert calculus

- Algebraic Geometry ( 154 Views )I will explain some attempts to develop a theory of Schubert calculus on the affine Grassmannian. I will begin with the different descriptions of the (co)homology rings due to Bott, Kostant and Kumar, and Ginzburg. Then I will discuss the problems of finding polynomial representatives for Schubert classes and the explicit determination of structure constants in (co)homology.

## Tatsunari Watanabe : Weighted completion and Generic curves in positive characteristics

- Algebraic Geometry ( 150 Views )It follows from results in Teichmüller Theory that generic curves of type (g,n) in characteristic zero have only n rational points that come from the tautological points. Richard Hain gave an algebraic proof of the theorem. Extending his algebraic method to positive characteristics, we prove the analogous result for generic curves in positive characteristics. The primary tool used is the theory of weighted completion, which was developed by Richard Hain and Makoto Matsumoto. It linearises a profinite group such as arithmetic mapping class groups. In our case, the weighted completion connects topology and algebraic geometry in positive characteristics.

## Will Donovan : Noncommutative deformations and the birational geometry of 3-folds

- Algebraic Geometry ( 148 Views )I will speak about recent work with Michael Wemyss (arXiv:1309.0698), applying noncommutative deformation theory to study the birational geometry of 3-folds. I will give a brief introduction to noncommutative deformations, and explain how every flippable or floppable rational curve in a 3-fold has a naturally associated algebra of noncommutative deformations. This construction yields new information about the (commutative) geometry of the 3-fold, and provides a new tool to differentiate between flops. As a further application, we show how the noncommutative deformation algebra controls the homological properties of a floppable curve, relating a Fourier-Mukai flop-flop functor and a spherical twist about the universal family over the noncommutative deformation algebra. I will also explain work in progress applying this approach to other geometric situations, and to higher dimensions.

## Eric Cances : Perturbation of nonlinear self-adjoint operators - Theory and applications

- Algebraic Geometry ( 143 Views )The perturbation theory of linear operators has a long history. Introduced by Rayleigh in the 1870's, it was used for the first time in quantum mechanics in an article by Schrödinger published in 1926. The mathematical study of the perturbation theory of self-adjoint operators was initiated by Rellich in 1937, and has been since then the matter of a large number of contributions in the mathematical literature.

Perturbation theory of nonlinear operators plays a key role in quantum physics and chemistry, where it is used in particular to compute the response properties of molecular systems to external electromagnetic fields (polarizability, hyperpolarizability, magnetic susceptibility, NMR shielding tensor, optical rotation, ...) within the framework of mean-field models.

In this talk, I will recall the basics of linear perturbation linear, present some recent theoretical results [1] on nonlinear perturbation theory, and show how this approach can be also used to speed-up numerical simulations [2,3] and compute effective a posteriori error bounds.

[1] E. Cancès and N. Mourad, A mathematical perspective on density functional perturbation theory, Nonlinearity 27 (2014) 1999-2034.

[2] E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralik, A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations, CRM 352 (2014) 941-946.

[3] E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralik, A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models, in preparation.

## Alan Guo : Lattice point methods for combinatorial games

- Algebraic Geometry ( 139 Views )We encode arbitrary finite impartial combinatorial games in terms of lattice points in rational convex polyhedra. Encodings provided by these lattice games can be made particularly efficient for octal games, which we generalize to squarefree games. These encompass all heap games in a natural setting where the Sprague-Grundy theorem for normal play manifests itself geometrically. We provide polynomial-time algorithms for computing strategies for lattice games provided that they have a certain algebraic structure, called an affine stratification.

## Nicolas Addington : Cubic fourfolds and K3 surfaces

- Algebraic Geometry ( 139 Views )Cubic fourfolds behave in many ways like K3 surfaces. Certain cubics -- conjecturally, the ones which are rational -- have K3s associated to them geometrically. Hassett has studied the cubics with K3s associated to them at the level of Hodge theory, and Kuznetsov has studied the cubics with K3s associated to them at the level of derived categories. These two notions of having an associated K3 should coincide. We prove they coincide generically. That is, Hassett's cubics form a countable union of irreducible Noether-Lefschetz divisors in moduli space, and Kuznetsov's cubics are a dense subset of these, forming a non-empty, Zariski open subset in each divisor.

## Chad Schoen : Chow groups, an introduction

- Algebraic Geometry ( 138 Views )Chow groups give functors from algebraic varieties to abelian groups which are related to (co)homology. However Chow groups frequently contain more information than (co)homology. The construction of Chow groups is easy. Their computation is often difficult. This talk has two aims. First of all it will serve as an introduction to Chow groups which should be accessible to those who have taken a one semester course in Riemann surfaces, two semesters of algebraic topology, and have a passing acquaintance with affine and projective algebraic varieties. (One month in an algebraic geometry course may suffice for the latter.) Given that the next two talks in the algebraic geometry seminar will discuss various aspects of Chow groups, this talk may function as a warm up. The second aim is to introduce Bloch's conjecture on the Chow group of zero dimensional algebraic cycles on a non-singular projective surface. Throughout the talk one may assume that the base field is the complex numbers.

## Angelo Vistoli : Fundamental gerbes

- Algebraic Geometry ( 134 Views )Let X be a connected and geometrically reduced variety over a field k, with a fixed rational point x_0 in X(k). Nori defined a profinite group scheme N(X,x_0), usually called Nori's fundamental group scheme, with the property that homomorphisms N(X,x_0) to a fixed finite group scheme G correspond to G-torsors P--> X with a fixed rational point in the inverse image of x_0 in P. If k is algebraically closed of characteristic 0 this coincides with Grothendieck's fundamental group, but is in general very different. Nori's main theorem is that if X is complete, the category of finite-dimensional representations of N(X,x_0) is equivalent to an abelian subcategory of the category of vector bundles on X, the category of essentially finite bundles. In my talk I will recall the basics of the theory of group schemes and torsors, and give a detailed description of Nori's results. Then I will explain my work in collaboration with Niels Borne, from the University of Lille, in which we extend them by removing the dependence on the base point, substituting Nori's fundamental group with a gerbe (in characteristic 0 this had already been done by Deligne), and give a simpler definition of essentially finite bundle, and a more direct and general proof of the correspondence between representations and essentially finite bundles.

## Sam Grushevsky : Stable cohomology of compactifications of the moduli spaces of abelian varieties

- Algebraic Geometry ( 134 Views )Cohomology of A_g, the moduli space of principally polarized complex g-dimensional abelian varieties, is the same as the cohomology of Sp(2g,Z). By Borel's result on group homology it turns out that for g>k the cohomology H^k(A_g) is independent of g - it is then called the stable cohomology of A_g. Similarly, the stable cohomology of the moduli space of curves was the subject of Mumford's conjecture, proven by Madsen and Weiss by topological methods. In a joint work with Klaus Hulek and Orsola Tommasi we show that the cohomology of the perfect cone toroidal compactification of A_g stabilizes, and compute some of this stable cohomology using algebro-geometric methods.

## Sam Payne : Boundary complexes and weight filtrations

- Algebraic Geometry ( 128 Views )The boundary complex of an algebraic variety is the dual complex of the boundary divisor in a compactification of a log resolution. I will present recent work showing that the homotopy type of this complex is independent of the choice of resolution and compactification, and give relations between these complexes and Deligne's weight filtration on singular cohomology.

## Jeremy Rouse : Quadratic forms representing all odd positive integers

- Algebraic Geometry ( 127 Views )We consider the problem of classifying all positive-definite integer-valued quadratic forms that represent all positive odd integers. Kaplansky considered this problem for ternary forms, giving a list of 23 candidates, and proving that 19 of those represent all positive odds. (Jagy later dealt with a 20th candidate.) Assuming that the remaining three forms represent all positive odds, we prove that an arbitrary, positive-definite quadratic form represents all positive odds if and only if it represents the odd numbers from 1 up to 451. This result is analogous to Bhargava and Hanke's celebrated 290-theorem. In addition, we prove that these three remaining ternaries represent all positive odd integers, assuming the Generalized Riemann Hypothesis. This result is made possible by a new analytic method for bounding the cusp constants of integer-valued quaternary quadratic forms $Q$ with fundamental discriminant. This method is based on the analytic properties of Rankin-Selberg $L$-functions, and we use it to prove that if $Q$ is a quaternary form with fundamental discriminant, the largest locally represented integer $n$ for which $Q(\vec{x}) = n$ has no integer solutions is $O(D^{2 + \epsilon})$.

## Thomas Kahle : Toric Fiber Products

- Algebraic Geometry ( 127 Views )The toric fiber product is a general procedure for gluing two ideals, homogeneous with respect to the same grading, to produce a new homogeneous ideal. Toric fiber products generalize familiar constructions in commutative algebra like adding monomial ideals and the Segre product. We will introduce the construction, discuss its geometrical content, and give an overview over the various preserved properties. Toric fiber products have been applied most successfully to families of ideals parametrized by combinatorial objects like graphs. We will show how to use toric fiber product to prove structural theorems about classes of ideals from algebraic statistics.

## Pete Clark : (Postponed to a later date) Algebraic Curves Violating the Hasse Principle

- Algebraic Geometry ( 125 Views )The celebrated "Hasse Principle" holds for plane conics over a number field, but generally not for algebraic curves of positive genus. Isolated examples of curves violating the Hasse Principle go back to Lind, Reichardt and Selmer in the 1940s and 1950s. Many more examples have been found since, and it now seems likely that the Hasse principle should, in some suitable sense, most often be false. However it is challenging to make, let alone prove, a precise statement to this effect. In talk I will discuss certain "anti-Hasse principles", some which are conjectural and others (more modest) which are known to hold. In particular I will address the problem of constructing curves of any given genus g >= 1 over any global field which violate the Hasse

## Humberto Diaz : On Chow groups of Varieties

- Algebraic Geometry ( 124 Views )For a complex algebraic variety, the Chow group is a geometric invariant which is easy to construct but often difficult to compute. In this talk, I will describe the construction of the Chow group, give some key examples and discuss some difficult open questions. I will also present a result about the Chow group of 0-cycles of the surface which parametrizes lines on a cubic 3-fold.

## Franziska Hinkelmann : Analysis of discrete models of biological systems using computer algebra

- Algebraic Geometry ( 124 Views )Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, bounded Petri nets, and agent-based models. Simulation is a common practice for analyzing discrete models, but many systems are far too large to capture all the relevant dynamical features through simulation alone. We convert discrete models into algebraic models and apply tools from computational algebra to analyze their dynamics. The key feature of biological systems that is exploited by our algorithms is their sparsity: while the number of nodes in a biological network may be quite large, each node is affected only by a small number of other nodes. In our experience with models arising in systems biology and random models, this structure leads to fast computations when using algebraic models, and thus efficient analysis. All algorithms and methods are available in our package Analysis of Dynamic Algebraic Models (ADAM), a user friendly web-interface that allows for fast analysis of large models, without requiring understanding of the underlying mathematics or any software installation. ADAM is available as a web tool, so it runs platform independent on all systems.

## Dick Hain : What is an algebraic group?

- Algebraic Geometry ( 119 Views )Algebraic groups are important in algebraic and arithmetic
geometry. This talk will be a general introduction to them. I will
discuss some basic example (elliptic curves, **GL _{n}**, ...) and then
introduce linear algebraic groups and affine algebraic groups. There
will be lots of examples, which will help explain why
they are important.

## Bernd Sturmfels : Real rank-two geometry

- Algebraic Geometry ( 118 Views )The real rank-two locus of an algebraic variety is the closure of the union of all secant lines spanned by real points. We seek a semi-algebraic description of this set. Its algebraic boundary consists of the tangential variety and the edge variety. Our study of Segre and Veronese varieties yields a characterization of tensors of real rank two. This is joint with Anna Seigal.

## Michael Griffin : On the distribution of Moonshine and the Umbral Moonshine conjectures.

- Algebraic Geometry ( 113 Views )Monstrous Moonshine asserts that the coefficients of the modular j-function are given in terms of ''dimensions'' of virtual character for the Monster group. There are 194 irreducible representations of the Monster, the largest of the sporadic simple groups, and it has been a longstanding open problem to determine their distribution in Moonshine. Witten and others have demonstrated deep connections between Monstrous Moonshine and quantum physics. The distributions of the Monster representations in Moonshine can be interpreted as the distributions of black hole states in 3 dimensional quantum gravity. In joint work with Ono and Duncan, we obtain exact formulas for these distributions. Moonshine type-phenomena have been observed for other finite simple groups besides the Monster. The Umbral Moonshine conjectures of Cheng, Duncan, and Harvey asserts that the Moonshine extends to 24 isomorphism classes of even unimodular positive-definite rank 24 lattices. Monstrous Moonshine can be regarded as the case of the Leech lattice. In 2013, Gannon proved the case for the Mathieu group M24. We offer a method of proof for the remaining 22 cases.

## V. Srinivas : Etale motivic cohomology and algebraic cycles

- Algebraic Geometry ( 107 Views )This talk will report on joint work with A. Rosenschon. There are examples showing that the torsion and co-torsion of Chow groups are complicated, in general, except in the ``classical'' cases (divisors and 0-cycles, and torsion in codimension 2). Instead, we may (following Lichtenbaum) consider the etale Chow groups, which coincide with the usual ones if we use rational coefficients; we show that they have better torsion and cotorsion if we work over the complex numbers. In contrast, they can have infinite torsion in some arithmetic situations (the usual Chow groups are conjectured to be finitely generated).

## Richard Schoen : An optimal eigenvalue problem and minimal surfaces in the ball

- Algebraic Geometry ( 102 Views )We consider the spectrum of the Dirichlet-Neumann map. This is the spectrum of the operator which sends a function on the boundary of a domain to the normal derivative of its harmonic extension. Along with the Dirichlet and Neumann spectrum, this problem has been much studied. We show how the problem of finding domains with fixed boundary area and largest first eigenvalue is connected to the study of minimal surfaces in the ball which meet the boundary orthogonally (free boundary solutions). We describe some conjectures on optimal surfaces and some progress toward their resolution. This is joint work with Ailana Fraser.