Quicklists
public 01:34:47

Richard Hain : Elliptic motives

  -   Algebraic Geometry ( 164 Views )

public 01:34:49

Eric Cances : Perturbation of nonlinear self-adjoint operators - Theory and applications

  -   Algebraic Geometry ( 144 Views )

The perturbation theory of linear operators has a long history. Introduced by Rayleigh in the 1870's, it was used for the first time in quantum mechanics in an article by Schrödinger published in 1926. The mathematical study of the perturbation theory of self-adjoint operators was initiated by Rellich in 1937, and has been since then the matter of a large number of contributions in the mathematical literature.

Perturbation theory of nonlinear operators plays a key role in quantum physics and chemistry, where it is used in particular to compute the response properties of molecular systems to external electromagnetic fields (polarizability, hyperpolarizability, magnetic susceptibility, NMR shielding tensor, optical rotation, ...) within the framework of mean-field models.

In this talk, I will recall the basics of linear perturbation linear, present some recent theoretical results [1] on nonlinear perturbation theory, and show how this approach can be also used to speed-up numerical simulations [2,3] and compute effective a posteriori error bounds.

[1] E. Cancès and N. Mourad, A mathematical perspective on density functional perturbation theory, Nonlinearity 27 (2014) 1999-2034.
[2] E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralik, A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations, CRM 352 (2014) 941-946.
[3] E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralik, A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models, in preparation.