Quicklists
public 01:34:49

Eric Cances : Perturbation of nonlinear self-adjoint operators - Theory and applications

  -   Algebraic Geometry ( 131 Views )

The perturbation theory of linear operators has a long history. Introduced by Rayleigh in the 1870's, it was used for the first time in quantum mechanics in an article by Schrödinger published in 1926. The mathematical study of the perturbation theory of self-adjoint operators was initiated by Rellich in 1937, and has been since then the matter of a large number of contributions in the mathematical literature.

Perturbation theory of nonlinear operators plays a key role in quantum physics and chemistry, where it is used in particular to compute the response properties of molecular systems to external electromagnetic fields (polarizability, hyperpolarizability, magnetic susceptibility, NMR shielding tensor, optical rotation, ...) within the framework of mean-field models.

In this talk, I will recall the basics of linear perturbation linear, present some recent theoretical results [1] on nonlinear perturbation theory, and show how this approach can be also used to speed-up numerical simulations [2,3] and compute effective a posteriori error bounds.

[1] E. Cancès and N. Mourad, A mathematical perspective on density functional perturbation theory, Nonlinearity 27 (2014) 1999-2034.
[2] E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralik, A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations, CRM 352 (2014) 941-946.
[3] E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralik, A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models, in preparation.

public 01:34:47

Richard Hain : Elliptic motives

  -   Algebraic Geometry ( 152 Views )

public 01:34:44

David Morrison : Normal functions and disk counting

  -   Algebraic Geometry ( 188 Views )

In 1990, Candelas, de la Ossa, Green, and Parkes used the then-new technique of mirror symmetry to predict the number of rational curves of each fixed degree on a quintic threefold. The techniques used in the prediction were subsequently understood in Hodge-theoretic terms: the predictions are encoded in a power-series expansion of a quantity which describes the variation of Hodge structures, and in particular this power-series expansion is calculated from the periods of the holomorphic three-form on the quintic, which satisfy the Picard-- Fuchs differential equation. In 2006, Johannes Walcher made an analogous prediction for the number of holomorphic disks on the complexification of a real quintic threefold whose boundaries lie on the real quintic, in each fixed relative homology class. (The predictions were subsequently verified by Pandharipande, Solomon, and Walcher.) This talk will report on recent joint work of Walcher and the speaker which gives the Hodge- theoretic context for Walcher's predictions. The crucial physical quantity "domain wall tension" is interpreted as a Poincar\'e normal function, that is, a holomorphic section of the bundle of Griffiths intermediate Jacobians. And the periods are generalized to period integrals of the holomorphic three-form over appropriate 3-chains (not necessarily closed), which leads to a generalization of the Picard--Fuchs equations.