## Miklos Racz : From trees to seeds: on the inference of the seed from large random trees

- Presentations ( 266 Views )I will discuss the influence of the seed in models of randomly growing trees; in particular, I will focus on the preferential attachment and uniform attachment models. In both of these models, different seeds lead to different distributions of limiting trees from a total variation point of view. I will discuss the differences and similarities in proving this for the two models. This is based on joint work with Sebastien Bubeck, Ronen Eldan, and Elchanan Mossel.

## Ravi Vakil : Murphys Law in algebraic geometry: Badly-behaved moduli spaces

- Presentations ( 183 Views )We consider the question: ``How bad can the deformation space of an object be?'' (Alternatively: ``What singularities can appear on a moduli space?'') The answer seems to be: ``Unless there is some a priori reason otherwise, the deformation space can be arbitrarily bad.'' We show this for a number of important moduli spaces. More precisely, up to smooth parameters, every singularity that can be described by equations with integer coefficients appears on moduli spaces parameterizing: smooth projective surfaces (or higher-dimensional manifolds); smooth curves in projective space (the space of stable maps, or the Hilbert scheme); plane curves with nodes and cusps; stable sheaves; isolated threefold singularities; and more. The objects themselves are not pathological, and are in fact as nice as can be. This justifies Mumford's philosophy that even moduli spaces of well-behaved objects should be arbitrarily bad unless there is an a priori reason otherwise. I will begin by telling you what ``moduli spaces'' and ``deformation spaces'' are. The complex-minded listener can work in the holomorphic category; the arithmetic listener can think in mixed or positive characteristic. This talk is intended to be (mostly) comprehensible to a broad audience.

## Ben Weinkove : Symplectic forms, Kahler metrics and the Calabi-Yau equation

- Presentations ( 171 Views )Yau's theorem on Kahler manifolds states that there exists a unique Kahler metric in every Kahler class with prescribed volume form. This has many applications in complex geometry. I will discuss symplectic manifolds. In a different direction, I will talk about the problem of existence of constant scalar curvature Kahler metrics, which can also be considered a generalization of Yau's theorem.

## Duncan Dauvergne : Geodesic networks in random geometry

- Presentations ( 51 Views )The directed landscape is a random directed metric on the plane that is the scaling limit for models in the KPZ universality class. In this metric, typical pairs of points are connected by a unique geodesic. However, certain exceptional pairs are connected by more exotic geodesic networks. The goal of this talk is to describe a full classification for these exceptional pairs. I will also discuss some connections with other models of random geometry.