Quicklists
public 01:34:47

Daniella E. Raveh : Nonlinear Dynamics of Aeroelastic Airfoil Systems in Buffeting Flows

  -   Nonlinear and Complex Systems ( 143 Views )

Transonic flows over airfoils at certain combinations of Mach numbers and steady mean angle of attack exhibit buffet; a phenomenon of large shock-wave oscillations due to flow separation and vortex shedding at a characteristic flow frequency. Buffet may occur even when the airfoil does not move. The seminar will present two recent studies of numerical simulations of an airfoil that a) undergoes prescribed harmonic oscillations, and b) is suspended by a spring in transonic buffeting flows. Both studies focus on the nonlinear interaction between the two oscillatory systems, namely the buffeting flow and the oscillating airfoil. Flow simulations of prescribed airfoil motions (using a Navier-Stokes turbulent flow solver) reveal a lock-in phenomenon. Certain combinations of amplitude and frequency of a prescribed airfoil oscillatory motion caused the buffet flow oscillations to lock into the prescribed frequency. The combinations of prescribed frequencies and amplitudes that cause lock-in present an .Arnold tongue. structure. There is a broad analogy between this flow phenomenon and the flow field of the Von Karman vortex street found behind a cylinder with the cylinder undergoing a prescribed oscillation. Flow simulations of an airfoil that is suspended on a spring reveal three distinct response characteristics, depending on the relationship of the elastic system.s natural frequency to the buffet frequency, and on the system.s mass ratio (the structural to fluid mass ratio). Elastic systems with natural frequencies that are lower than the buffet frequency exhibit a single-frequency response, with a frequency that is shifted form the buffet frequency towards the elastic natural frequency as the mass ratio is decreased (and the magnitude of the elastic response increases). On the other hand, an elastic system with a natural frequency that is the same as the buffet frequency exhibits resonance. Finally, elastic systems with natural frequencies that are higher than the buffet frequency exhibit a response with two distinct frequencies, that of the buffet and that of the elastic natural frequency. As long as the pitch amplitudes are small, the response is mostly at the buffet frequency. As the pitch amplitudes increase there is more power in the elastic natural frequency, and less in the buffet frequency. As the pitch amplitudes further grow, the response is in the elastic natural frequency solely, and the buffet frequency vanishes. To the best of the authors. knowledge the nonlinear dynamics of elastic systems in buffeting flows has not been reported previously. The authors are interested to learn whether similar phenomena are known in other research communities.

public 01:39:44

Bob Behringer : TBA

  -   Nonlinear and Complex Systems ( 142 Views )

public 01:39:40

Frederic Lechenault : Experimental investigation of equilibration properties in model granular subsystems

  -   Nonlinear and Complex Systems ( 168 Views )

We experimentally investigate the statistical features of the stationary states reached by two idealized granular liquids able to exchange volume. The system consists in two binary mixtures of the same number of soft disks, hence covering the same area, but with different surface properties. The disks sit on a horizontal air table, which provides ultra low friction at the cell bottom, and are separated by a mobile wall. Energy is injected in the system by means of an array of randomly activated coil bumpers standing as the edges of the cell. Due to the energy injection, the system acts like a slow liquid and eventually jams at higher packing fraction. We characterize the macroscopic states by studying the motion of the piston. We find that its average position is different from one half, and a non monotonic function of the overall packing fraction, which reveals the crucial role played by the surface properties in the corresponding density of states. We then study the bulk statistics of the packing fraction and the dynamics in each subsystem. We find that the measured quantities do not equilibrate, and become dramatically different as the overall packing fraction is increased beyond the onset of supercooling. However, the local fluctuations of the packing fraction are uniquely determined by its average, and hence independent of the interaction between disks. We then focus on the mixing properties of such an assembly. We characterize mixing by computing the topological entropy of the braids formed by the stationary trajectories of the grains at each pressure. This quantity is shown to be well defined, very sensitive to onset of supercooling, reflecting the dynamical arrest of the assembly, and to equilibrate in the two subsystems. Joint work with Karen Daniels.

public 01:34:46

Dezhe Z. Jin : Associative chain as the foundation for action sequence and timing: a case study with birdsong

  -   Nonlinear and Complex Systems ( 138 Views )

Sequence and timing are two fundamental aspects of many critical motor actions that humans and animals must learn and perform. Human speech is a familiar example. How precisely timed action sequences are controlled by networks of neurons, and how such neural networks form through experience, are poorly understood.

Songbirds are excellent animal models for investigating these problems. Male songbirds learn to sing songs with exquisite temporal complexity and precision, similar to human speech. Unlike human brains, songbird brains are experimentally accessible. Indeed, the wealth of experimental data on songbirds makes them ideal systems for computational modeling.

In this talk, I will present a computational study of production and learning of timed action sequence, using birdsong as a concrete example. First, I will advance the idea that associative chains of neurons, also called "synfire chains" in some context, are fundamental building blocks of sequence generating networks. I will show experimental evidence of their existence in the songbird brain, including the recent discovery of a critical property of song controlling neurons, which was predicted by a computational analysis of the robustness of the associative chain dynamics against imperfects in the connectivity and other sources of noise. Second, I will demonstrate computationally that associative chains can form simply through a self-organized process, which depends on ubiquitously observed properties of neurons, including spike-time dependent plasticity of synapses, axonal remodeling, and spontaneous activity. This result suggests that associative chains are stable "attractors" of neural connectivity. The process is robust against death and renewal of neurons, which naturally occur in songbird brain. Finally, I will illustrate that associative chains are also useful for sequence recognition tasks, such as song recognition in songbirds, thus can serve as the neural substrate of sensory-motor integration.

Henry Greenside (hsg@phy.duke.edu) will be the host for his visit.

public 01:34:47

Emanuela Del Gado : Gelation and densification of cement hydrates: a soft matter in construction

  -   Nonlinear and Complex Systems ( 174 Views )

5-8 % of the global human CO2 production comes from the production of cement, concrete main binder. The material strength emerges through the development, once in contact with water, of calcium-silicate-hydrate (C-S-H) gels that literally glue together the final compound. Current industrial research aims at exploring alternative and more environmentally friendly chemical compositions while enhancing rheology and mechanics, to overcome the many technological challenges and guarantee concrete standards. Identifying the fundamental mechanisms that control the gel properties at the early stages of hydration and setting is crucial, although challenging, because of far-from-equilibrium conditions, closely intertwined to the evolution of the chemical environment, that are a hallmark of cement hydration.
I will discuss a recently developed statistical physics approach, which allows us to investigate the gel formation under the out-of-equilibrium conditions typical of cement hydration and the role of the nano-scale structure in C-S-H mechanics upon hardening. Our approach, combining Monte Carlo and Molecular Dynamics simulations, unveils for the first time how some distinctive features of the kinetics of cement hydration can be related to the nano-scale effective interactions and to the changes in the morphology of the gels. The novel emerging picture is that the changes of the physico-chemical environment, which dictate the evolution of the effective interactions, specifically favor the gel formation and its continuous densification. Our findings provide new handles to design properties of this complex material and an extensive comparison of numerical findings for the hardened paste with experiments ranging from SANS, SEM, adsorption/desorption of N2 and water to nano-indentation provide new, fundamental insights into the microscopic origin of the properties measured.
K. Ioannidou, R.J.-M. Pellenq and E. Del Gado Controlling local packing and growth in calcium-silicate-hydrate gels , Soft Matter 10, 1121 (2014)
E. Del Gado, K. Ioannidou, E. Masoero, A. Baronnet, R. J.-M. Pellenq, F. J. Ulm and S. Yip, A soft matter in construction - Statistical physics approachfor formation and mechanics of C--S--H gels in cement, Eur. Phys. J. - ST 223, 2285 (2014).
K. Ioannidou, K.J. Krakowiak, M. Bauchy, C.G. Hoover, E. Masoero, S. Yip, F.-J. Ulm, P. Levitz, R.J.-M. Pellenq and E. Del Gado, The mesoscale textureof cement hydrates , PNAS 113, 2029 (2016)**
K. Ioannidou, M. Kanduc, L. Li, D. Frenkel, J. Dobnikar and E. Del Gado, The crucial effect of early-stage gelation on the mechanical properties of cement hydrates , under review

public 01:39:37

Andrew D Bragg : Lagrangian irreversibility and inversions in 3 and 2 dimensional turbulence

  -   Nonlinear and Complex Systems ( 170 Views )

Studying how small inertial particles suspended in turbulent flows move relative to each other provides fundamental insights into their transport, mixing and collisions. These insights are crucial for tackling diverse problems ranging from droplet growth in warm clouds, to planetesimal formation through collisional aggregation in turbulent protoplanetary nebula. A deeper understanding of the relative motion of the particles can be obtained by investigating both their forward-in-time (FIT) and backward-in-time (BIT) dispersion. When FIT and BIT dispersion are different it signifies irreversibility, and since FIT and BIT dispersion are related to different problems, understanding the irreversibility is of fundamental and practical importance.
I will present new theoretical arguments and asymptotic predictions, along with results from Direct Numerical Simulations (DNS) of the governing equations, to show that inertial particle dispersion can be very strongly irreversible in turbulence, with BIT being much faster than FIT dispersion in 3-dimensional turbulence. The results also show that inertial particles can disperse much faster than fluid (interialess) particles. I will also present arguments, confirmed by DNS results, that in 2-dimensional turbulence the nature of the irreversibility and the direction of the particle energy fluxes can invert when the particle inertia exceeds a certain threshold. These results significantly advance our understanding of dispersion problems, and lead to new capabilities for predicting the effect of inertia on the rate at which particles spread out and mix together in turbulence, and the rate at which they collide.

public 01:39:46

Michael W. Deem : Antigenic Distance, Glassy Dynamics, and Localization in the Immune System

  -   Nonlinear and Complex Systems ( 149 Views )

The immune system normally protects the human host against death by infection. I will introduce a hierarchical spin glass model of the evolutionary dynamics that occurs in the antibody-mediated and T cell-mediated immune responses. The theory will be used to provide a mechanism for original antigenic sin, wherein an initial exposure to antigen degrades the response of the immune system upon subsequent exposure to related, but different, antigens. A new order parameter to characterize antigenic distance will be introduced from the theory. This order parameter predicts effectiveness of the influenza vaccine more reliably than do results from animal model studies currently used by world health authorities. This order parameter would seem to be a valuable new tool for making vaccine-related public health policy decisions. Next, I will note that while the immune system normally protects the human host against death by infection, the method used by the immune system to search sequence space is rather slow --- interestingly there exist biological mechanisms that can find antibodies with higher affinity and also find them more quickly. Thus, one would think that these more powerful evolutionary mechanisms would give an immune system that responds faster and more effectively against disease. So, why didn't we evolve that kind of adaptive response? I will show that the slow glassy dynamics of the immune system serves a functional role of inhibiting the autoimmune diseases that these more powerful searching mechanisms would induce. I will suggest that the controversy related to the correlation between chronic infection and autoimmune disease might be addressed by searching for the broad distribution of onset times for autoimmune disease predicted from the theory.

public 01:34:44

Gaby Katul : TBA

  -   Nonlinear and Complex Systems ( 190 Views )

public 01:29:47

Marija Vucelja : A glass transition in population genetics: Emergence of clones in populations

  -   Nonlinear and Complex Systems ( 208 Views )

The fields of evolution and population genetics are undergoing a renaissance, due to the abundance of sequencing data. On the other hand, the existing theories are often unable to explain the experimental findings. It is not clear what sets the time scales of evolution, whether for antibiotic resistance, an emergence of new animal species, or the diversification of life. The emerging picture of genetic evolution is that of a strongly interacting stochastic system with large numbers of components far from equilibrium. In this talk, I plan to focus on the clone competition and discuss the diversity of a random population that undergoes selection and recombination (sexual reproduction). Recombination reshuffles genetic material while selection amplifies the fittest genotypes. If recombination is more rapid than selection, a population consists of a diverse mixture of many genotypes, as is observed in many populations. In the opposite regime, selection can amplify individual genotypes into large clones, and the population reaches the so-called "clonal condensation". I hope to convince you that our work provides a qualitative explanation of clonal condensation. I will point out the similarity between clonal condensation and the freezing transition in the Random Energy Model of spin glasses. I will conclude with a summary of our present understanding of the clonal condensation phenomena and describe future directions and connections to statistical physics.