Quicklists
public 01:34:47

Brian Utter : Jamming in Vibrated Granular Systems

  -   Nonlinear and Complex Systems ( 116 Views )

Granular materials exist all around us, from avalanches in nature to the mixing of pharmaceuticals, yet the behavior of these ``fluids'' is poorly understood. Their flow can be characterized by the continuous forming and breaking of a strong force network resisting flow. This jamming/unjamming behavior is typical of a variety of systems, including granular flows, and is influenced by factors such as grain packing fraction, applied shear stress, and the random kinetic energy of the particles. I'll present experiments on quasi-static shear and free-surface granular flows under the influence of external vibrations. By using photoelastic grains, we are able to measure both particle trajectories and the local force network in these 2D flows. We find through particle tracking that dense granular flow is composed of comparable contributions from the mean flow, affine, and non-affine deformations. During shear, sufficient external vibration weakens the strong force network and reduces the amount of flow driven by sidewalls. In a rotating drum geometry, large vibrations induce failure as might be expected, while small vibration leads to strengthening of the pile. The avalanching behavior is also strongly history dependent, as evident when the rotating drum is driven in an oscillatory motion, and we find that sufficient vibration erases the memory of the pile. These results point to the central role of the mobilization of friction in quasi-static granular flow.

public 01:39:53

David Barton : Numerical continuation for investigating nonlinear systems: from model to experiment

  -   Nonlinear and Complex Systems ( 97 Views )

Numerical continuation is a tool for investigating the bifurcation structure of a nonlinear dynamical system with respect to the system parameters. It is most often used to "carve up" parameter space into regions of qualitatively different behaviour by finding and tracking bifurcations (e.g., Hopf bifurcations) as the system parameters change. This talk will give an introduction to the theory behind numerical continuation and go on to discuss recent developments in the field.

Particular attention will be paid to numerical continuation of systems with non-smoothness, motivated by the example of intermittent contacts in a model of orthogonal cutting (turning). Rich dynamical behaviour is present in this model due to the presence of a grazing bifurcation which denotes the transition point from constant contact of the cutting tool with the workpiece to intermittent contact. Using numerical continuation it is possible to elucidate the full bifurcation structure of the system, something that would be extremely difficult with other methods.

Finally, numerical continuation will be demonstrated as applied to a physical experiment (so-called control-based continuation): a nonlinear energy harvesting device. Numerical continuation in this context allows the investigation of a physical device without prior knowledge of a model. Both stable and unstable motions can be investigated and bifurcations found directly. As such these investigations may aid in establishing what an appropriate mathematical model could be.

public 01:34:54

Sreekanth Pannala : Multiscale/Multiphysics simulation strategy for gas-solids flow reactors

  -   Nonlinear and Complex Systems ( 144 Views )

Gas-solids chemically reacting flows are omnipresent in many multiphase flow reactors in various industries like Chemical, Fossil and Nuclear. The challenging aspect of modeling these reacting flows are the wide range of both temporal and spatial scales encountered in these systems. The challenge is to accurately account and bridge (as seamlessly as possible) the length and time scales involved in the problem. First, the problem is introduced using biomass gasifier/pyrolyser and nuclear fuel coater with sample results as examples and provide an overview of the various models currently used at the different scales. In particular, the critical role of the granular dynamics in the overall performance of the reactors will be highlighted. The ongoing development of a multiphysics and multiscale mathematics framework for coupling various modeling methods over a range of scales will be presented. The development of a general wavelet-based multiscale methodology called compound wavelet matrix (CWM) for bridging spatial and temporal scales will be reported. Finally, the steps needed to generalize the current methodology for arbitrary heterogeneous chemically reacting flows or other applications involving multiscale/multiphysics coupling will be elucidated. The challenges and opportunities of employing these models for rapid deployment of clean energy solutions based on multiphase flow reactors to the market place will be discussed.

public 01:34:47

Daniella E. Raveh : Nonlinear Dynamics of Aeroelastic Airfoil Systems in Buffeting Flows

  -   Nonlinear and Complex Systems ( 143 Views )

Transonic flows over airfoils at certain combinations of Mach numbers and steady mean angle of attack exhibit buffet; a phenomenon of large shock-wave oscillations due to flow separation and vortex shedding at a characteristic flow frequency. Buffet may occur even when the airfoil does not move. The seminar will present two recent studies of numerical simulations of an airfoil that a) undergoes prescribed harmonic oscillations, and b) is suspended by a spring in transonic buffeting flows. Both studies focus on the nonlinear interaction between the two oscillatory systems, namely the buffeting flow and the oscillating airfoil. Flow simulations of prescribed airfoil motions (using a Navier-Stokes turbulent flow solver) reveal a lock-in phenomenon. Certain combinations of amplitude and frequency of a prescribed airfoil oscillatory motion caused the buffet flow oscillations to lock into the prescribed frequency. The combinations of prescribed frequencies and amplitudes that cause lock-in present an .Arnold tongue. structure. There is a broad analogy between this flow phenomenon and the flow field of the Von Karman vortex street found behind a cylinder with the cylinder undergoing a prescribed oscillation. Flow simulations of an airfoil that is suspended on a spring reveal three distinct response characteristics, depending on the relationship of the elastic system.s natural frequency to the buffet frequency, and on the system.s mass ratio (the structural to fluid mass ratio). Elastic systems with natural frequencies that are lower than the buffet frequency exhibit a single-frequency response, with a frequency that is shifted form the buffet frequency towards the elastic natural frequency as the mass ratio is decreased (and the magnitude of the elastic response increases). On the other hand, an elastic system with a natural frequency that is the same as the buffet frequency exhibits resonance. Finally, elastic systems with natural frequencies that are higher than the buffet frequency exhibit a response with two distinct frequencies, that of the buffet and that of the elastic natural frequency. As long as the pitch amplitudes are small, the response is mostly at the buffet frequency. As the pitch amplitudes increase there is more power in the elastic natural frequency, and less in the buffet frequency. As the pitch amplitudes further grow, the response is in the elastic natural frequency solely, and the buffet frequency vanishes. To the best of the authors. knowledge the nonlinear dynamics of elastic systems in buffeting flows has not been reported previously. The authors are interested to learn whether similar phenomena are known in other research communities.

public 01:17:07

Brian Mann : Nonlinear Energy Harvesting

  -   Nonlinear and Complex Systems ( 143 Views )

public 01:39:40

Frederic Lechenault : Experimental investigation of equilibration properties in model granular subsystems

  -   Nonlinear and Complex Systems ( 168 Views )

We experimentally investigate the statistical features of the stationary states reached by two idealized granular liquids able to exchange volume. The system consists in two binary mixtures of the same number of soft disks, hence covering the same area, but with different surface properties. The disks sit on a horizontal air table, which provides ultra low friction at the cell bottom, and are separated by a mobile wall. Energy is injected in the system by means of an array of randomly activated coil bumpers standing as the edges of the cell. Due to the energy injection, the system acts like a slow liquid and eventually jams at higher packing fraction. We characterize the macroscopic states by studying the motion of the piston. We find that its average position is different from one half, and a non monotonic function of the overall packing fraction, which reveals the crucial role played by the surface properties in the corresponding density of states. We then study the bulk statistics of the packing fraction and the dynamics in each subsystem. We find that the measured quantities do not equilibrate, and become dramatically different as the overall packing fraction is increased beyond the onset of supercooling. However, the local fluctuations of the packing fraction are uniquely determined by its average, and hence independent of the interaction between disks. We then focus on the mixing properties of such an assembly. We characterize mixing by computing the topological entropy of the braids formed by the stationary trajectories of the grains at each pressure. This quantity is shown to be well defined, very sensitive to onset of supercooling, reflecting the dynamical arrest of the assembly, and to equilibrate in the two subsystems. Joint work with Karen Daniels.

public 01:34:44

Brad Murray : TBA

  -   Nonlinear and Complex Systems ( 161 Views )

public 01:34:45

Jie Yu : TBA

  -   Nonlinear and Complex Systems ( 152 Views )

public 01:39:44

Katia Koelle : Exploration, innovation, and selective sweeps in the ecology

  -   Nonlinear and Complex Systems ( 141 Views )

For many biological systems, the timescale at which ecological interactions occur is much shorter than the timescale at which evolutionary changes occur. For rapidly evolving pathogens such as influenza, however, this is not the case; influenza researchers therefore need to understand both the ecological interactions between the host and the pathogen and the virus?s evolutionary changes in order to ultimately control the disease in humans. Recently, a study looking at the evolutionary patterns of influenza showed that, while the virus?s genetic evolution occurred gradually, its antigenic evolution occurred in a punctuated manner. (Genetic evolution refers to how the virus?s nucleotides change over time; antigenic evolution refers to how the virus changes over time with respect to how our immune system recognizes it.) Previous research from our group hypothesized that these differences in evolutionary patterns could be explained by the presence of /neutral networks/ in the virus?s genotype space: networks of sequences that differ genetically from one another but fold into the same protein conformation and thereby share antigenic properties. Here, I will present a simple epidemiological model that implicitly incorporates these neutral networks. I show that this model can reproduce (1) the seasonal and interannual outbreak patterns of influenza, (2) the quantitative patterns of influenza?s antigenic evolution, and (3) the patterns of the virus?s genetic evolution, including its characteristic phylogenetic tree. I end with how this model may be useful in understanding patterns of viral diversity in other host species (e.g., avian and equine hosts).

public 01:39:44

Bob Behringer : TBA

  -   Nonlinear and Complex Systems ( 142 Views )

public 01:34:44

Gaby Katul : TBA

  -   Nonlinear and Complex Systems ( 190 Views )

public 01:34:03

Amilcare Porporato : Random Jumps in Eco-Hydrology: Non-Gaussian Forcing in the Nonlinear Soil-Plant-Atmosphere System

  -   Nonlinear and Complex Systems ( 159 Views )

The terrestrial water balance is forced by highly intermittent and unpredictable pulses of rainfall. This in turn impacts several related hydrological and ecological processes, such as plant photosynthesis, soil biogeochemistry and has feedbacks on the local climate. We treat the rainfall forcing at the daily time scale as a of marked (Poisson) point processes, which is then used the main driver of the stochastic soil water balance equation. We analyze the main nonlinearities in the soil water losses and discuss the probabilistic dynamics of soil water content as a function of soil-plant and vegetation characteristics. Crossing and mean-first-passage-time properties of the stochastic soil moisture process define the statistics of plant water stress, which in turn control plant dynamics, as shown in application to tree-grass coexistence in the Kalahari transect.
In the second part of this overview, we briefly illustrate: i) the propagation of soil moisture fluctuations through the nonlinear soil carbon and nitrogen cycles, ii) the possible emergence of persistence and preferential states in rainfall occurrence due to soil moisture feedback, and iii) the impact of inter-annual rainfall variability in connection to recent theory of ‘superstatistics’.

REFERENCES:
Rodriguez-Iturbe I. and A. Porporato, Ecohydrology of water controlled ecosystems: plants and soil moisture dynamics. Cambridge University Press, Cambridge, UK. 2004.
Laio F., Porporato A., Ridolfi L., and Rodriguez-Iturbe I. (2001) Plants in water controlled ecosystems: Active role in hydrological processes and response to water stress. II. Probabilistic soil moisture dynamics. Advances in Water Research, 24, 707-723.
Porporato A., Laio F., Ridolfi L., and Rodriguez-Iturbe I. (2001) Plants in water controlled ecosystems: Active role in hydrological processes and response to water stress. III. Vegetation water stress. Advances in Water Research, 24, 725-744.
Porporato A., D’Odorico P., Phase transitions driven by state-dependent Poisson noise, Phys. Rev. Lett. 92(11), 110601, 2004.
D’Odorico P., Porporato A., Preferential states in soil moisture and climate dynamics, Proc. Nat. Acad. Sci. USA, 101(24), 8848-8851, 2004. Manzoni S., Porporato A., D’Odorico P. and I. Rodriguez-Iturbe. Soil nutrient cycles as a nonlinear dynamical system. Nonlin. Proc. in Geophys. 11, 589-598, 2004.
Porporato A., G. Vico, and P. Fay, Interannual hydroclimatic variability and Ecosystem Superstatistics. Geophys. Res. Lett., 33, L5402, 2006.
Daly, E., and A. Porporato, Inter-time jump statistics of state-dependent Poisson processes, Phys. Rev. E, 75, 011119, 2007.