Quicklists
public 01:34:57

Nicholas Ouellette : Multiscale Dynamics and Coherent Structures in Turbulent Flow

  -   Nonlinear and Complex Systems ( 119 Views )

Despite an enormous range of applications and centuries of scientific study, understanding and predicting the flow of fluids remains a tremendous challenge, particularly when the flow is chaotic or turbulent. Turbulent flows tend to be characterized by violent fluctuations, enormous numbers of strongly coupled degrees of freedom, and significant variability in space and time. But despite all this complexity, turbulence is not random. Rather, it tends to self-organize into striking but transient patterns and features that arise from nonlinear interactions. Some of these "coherent structures," such as strong vortices, are readily apparent; others are more subtle. But how much can we learn or predict about the flow from studying coherent structures? The answer may lie in the energetics of the flow, since these same nonlinearities couple dynamics on different scales and, in turbulence, drive a net transfer of energy from the scales at which it is injected into the flow to the scales at which it is dissipated. To begin to make quantitative links between the nonlinear dynamics of the flow and the spontaneous generation of spatiotemporal order, I will discuss experimental results from a quasi-two-dimensional turbulent flow. Using a filtering technique, we extract the spatially localized scale-to-scale flux of energy, and show that it is linked to suitably defined coherent structures. I will also discuss the self-organization of the turbulent stress that drives this energy transfer.

public 01:34:56

John Cain : Stabilization of Periodic Wavetrains in Excitable Media

  -   Nonlinear and Complex Systems ( 106 Views )

Cardiac cells, like toilets, are excitable: Giving a sufficiently strong push to the handle of a quiescent toilet elicits a dramatic response (flush) followed by a gradual return to the resting state. Likewise, supplying a sufficiently strong electrical stimulus to a quiescent cardiac cell elicits a prolonged elevation of the membrane potential (an action potential).

Suppose that one end of an excitable fiber of cardiac cells is paced periodically. If the period is large, the generic response is a stable periodic wave train of the sort associated with normal, coordinated contraction of heart muscle tissue. Reducing the period (think "speeding up the heart rate") can cause the onset of an instability which can have devastating physiological consequences. Echebarria and Karma (Chaos, 2002) argued that if one attempts to stabilize the periodic wave train by using feedback control to perturb the pacing period, success can be achieved only within some small radius of the stimulus site. Those authors used a special case of the ETDAS control method that Dan Gauthier and Josh Socolar devised.

Here, I will offer an explanation as to WHY algorithms like ETDAS, applied locally, cannot achieve global results in this context. Then, I'll argue that it actually IS possible to stabilize the periodic wave train if the perturbations are chosen more carefully. While these findings may seem encouraging from an experimental or clinical standpoint, I will close by describing some recent work of Flavio Fenton which I believe is even more promising.

public 01:39:57

Lawrence Virgin : Identifying chaos using spectral content

  -   Nonlinear and Complex Systems ( 105 Views )

The characterization of chaos as a random-like response from a deterministic dynamical system with an extreme sensitivity to initial conditions is well-established, and has provided a stimulus to research in nonlinear dynamical systems in general. In a formal sense, the computation of the Lyapunov Exponent (LE) spectrum establishes a quantitative measure, with at least one positive LE (and generally bounded motion) indicating a local exponential divergence of adjacent trajectories. Other measures are associated with certain geometric features of a chaotic attractor, e.g., the fractal dimension, and broadband frequency content. However, although the extraction of LE's can be accomplished with (necessarily noisy) experimental data, this is still a relatively data-intensive, sensitive (and frustrating) endeavor.
We present here an alternative, pragmatic approach to identifying chaos as a function of system parameters, based on frequency content and extending the concept of the spectrogram. This talk will describe this approach applied to systems of increasing complexity, ranging from direct numerical simulations of familiar archetypal systems like Lorenz and the pendulum to experimental data generated from mechanical systems. The accuracy and utility of the approach, including the effect of noise, is tested relative to the standard (LE) approach.

public 01:33:51

Ken Kamrin : Toward a predictive continuum model for dense granular flows

  -   Nonlinear and Complex Systems ( 117 Views )

The challenge of predicting velocity and stress fields in any flowing granular material has proven to be a difficult one, from both computational and theoretical perspectives. Indeed, researchers are still in search of the ``Navier-Stokes''-equivalent for flowing granular materials. Granular flows can be adequately predicted using grain-by-grain discrete element methods (DEM), but these approaches become computationally unrealistic for large bodies of material and long times. A robust continuum model, once identified, would have the practical benefit that it could be implemented at a meso-scale saving many orders of magnitude in computation time compared to DEM.

Here, we begin by synthesizing a 3D elasto-viscoplastic law for steady granular flow, merging an existing "frictional fluid" relation with a nonlinear granular elasticity relation to close the system. The flow rate vanishes within a frictional (Drucker-Prager) yield surface and the elastic response is based on a mean-field model generalizing Hertz's contact law. The resulting form is general, able to produce flow and stress predictions in any well-posed boundary value problem. We implement it using ABAQUS/Explicit finite-element package and run test simulations in multiple geometries. The solutions are shown to compare favorably against a number of experiments and DEM simulations.

While this relation appears to function well for rapid flows, experimental results can often differ from the predictions in regions of slower flows. We have been able to attribute many of these phenomena to nonlocal effects stemming from the finite-ness of the grain size. To correct this, we consider the addition of a simple nonlocal term to the rheology in a fashion similar to recent nonlocal flow models in the emulsions community. The results of this extended model are compared against many DEM steady-flow simulations in three different 2D geometries. Quantitative agreement is found for all geometries and over various geometrical/loading parameters. By natural extension, the nonlocal model is then converted to three dimensions with minimal changes, and is implemented numerically as a User-Element in the ABAQUS package. We show that a single calibration of the 3D model quantitatively predicts hundreds of experimental flows in different geometries, including, for the first time, the wide-shear zones observed in split-bottom cells, a geometry made infamous for resisting a theoretical treatment for almost a decade.

public 01:31:38

Suliana Manley : Super-resolution imaging and single-molecule tracking, from viruses to chromatin

  -   Nonlinear and Complex Systems ( 104 Views )

We apply super-resolution imaging and single-molecule tracking to gain insight into how proteins assemble to form organized structures in cells. We describe several new tools that were developed to study diverse systems, from viruses to chromatin. The HIV structural protein Gag assembles to form spherical particles of radius ~70 nm. During the assembly process, the number of Gag proteins increases over several orders of magnitude, from a few at nucleation to thousands at completion. We demonstrated an approach that permits quantitative morphological and molecular counting analysis of hundreds of HIV-Gag clusters at the cellular plasma membrane, thus elucidating how different fluorescent labels can change the assembly of virions. Higher-order chromatin structure determines the degree of local DNA condensation, which in turn influences gene accessibility and therefore the expression of particular genes. We present two complementary approaches to address this limitation: super-resolution imaging of directly labeled DNA, and singlemolecule high density tracking of proteins participating in DNA packaging. For STORM imaging of DNA, we stained cells with the DNA-specific dye Picogreen, and obtained a ~5-fold improvement in resolution, resolving the sub-diffraction organization of chromatin structures in living cells. For single molecule tracking (sptPALM), we used small chemical tags to target synthetic dyes to specific protein targets, and visualized their dynamics3. The combination of DNA and protein superresolution imaging and single particle tracking will allow us to study chromatin organization in living cells, and rearrangements in response to exogenous signals.

public 01:39:49

Clarence W. Rowley : Low-order models for control of fluids

  -   Nonlinear and Complex Systems ( 133 Views )

The ability to effectively control a fluid would enable many exciting technological advances, such as the design of quieter, more efficient aircraft. Model-based feedback control is a particularly attractive approach, but the equations governing the fluid, although known, are typically too complex to apply standard tools for dynamical systems analysis or control synthesis. This talk addresses model reduction techniques, which are used to simplify existing models, to obtain low-order models tractable enough to be used for analysis and control, while retaining the essential physics. In particular, we will discuss two techniques: balanced truncation and Koopman modes. Balanced truncation is a well-known technique for model reduction of linear systems, with provable error bounds, but it is not computationally tractable for very large systems. We present an approximate version, called Balanced POD, that is computationally tractable, and produces much better models than traditional Proper Orthogonal Decomposition (POD), at least for the examples studied. Koopman modes are based on spectral analysis of the Koopman operator, an infinite-dimensional linear operator that describes the full nonlinear dynamics of a nonlinear system, and we show how the associated modes can elucidate coherent structures in examples including a jet in crossflow and the wake of a flat plate.