Quicklists
public 01:34:49

Camille Scalliet : When is the Gardner transition relevant?

  -   Nonlinear and Complex Systems ( 289 Views )

The idea that glasses can become marginally stable at a Gardner transition has attracted significant interest among the glass community. Yet, the situation is confusing: even at the theoretical level, renormalization group approaches provide contradictory results on whether the transition can exist in three dimensions. The Gardner transition was searched in only two experimental studies and few specific numerical models. These works lead to different conclusions for the existence of the transition, resulting in a poor understanding of the conditions under which a marginally stable phase can be observed. The very relevance of the Gardner transition for experimental glasses is at stake.

We study analytically and numerically the Weeks-Chandler-Andersen model. By changing external parameters, we continuously explore the phase diagram and regimes relevant to granular, colloidal, and molecular glasses. We revisit previous numerical studies and confirm their conclusions. We reconcile previous results and rationalise under which conditions a Gardner phase can be observed. We find that systems in the vicinity of a jamming transition possess a Gardner phase. Our findings confirm the relevance of a Gardner transition for colloidal and granular glasses, and encourage future experimental work in this direction. For molecular glasses, we find that no Gardner phase is present, but our studies reveal instead the presence of localised excitations presumably relevant for mechanical and vibrational properties of glasses.

public 01:39:58

Stephen Teitel : Shear Banding, Discontinuous Shear Thickening, and Rheological Transitions in Athermally Sheared Frictionless Disks

  -   Nonlinear and Complex Systems ( 190 Views )

Simple models of classical particles, interacting via soft- or hard-core repulsive contact interactions, have been used to model a wide variety of granular and soft-matter materials, such as dry granular particles, foams, emulsions, non-Brownian suspensions, and colloids. Such materials display a variety of complex behaviors when in a state of steady shear driven flow. These include (i) Jamming: where the system transitions from a flowing liquid to a rigid but disordered solid as the particle packing increases; (ii) Shear Banding: where the system becomes spatially inhomogeneous, separating into distinct bands flowing at different sh ear strain rates; (iii) Discontinuous Shear Thickening: where the shear stress jumps discontinuously as the shear strain rate is increased. In this talk we will consider a simple numerical model of athermal soft-core interacting frictionless disks in steady state shear flow. We will show that the mechanism by which energy is dissipated plays a key role in determining the rheology of the system. For a model with a tangential viscous collisional dissipation, but no elastic friction, we will show that as the particle packing increases there is a sharp first order phase transition from a region of Bagnoldian rheology (stress ~ strain-rate^2) to a region of Newtonian rheology (stress ~ strain-rate), that takes place below the jamming transition. In a phase diagram of varying strain-rate and packing fraction (or strain-rate and pressure) this first order rheological phase transition manifests itself as a coexistence region, consisting of coexisting bands of Bagnoldian and Newtonian rheology in mechanical equilibrium with each other. Crossing this coexistence region by increasing the strain-rate at fixed packing, we find that discontinuous shear thickening can result if the strain-rate is varied too rapidly for the system to relax to the true shear-banded steady state. We thus demonstrate that the rheology of simply interacting sheared disks can be considerably more complex than previously realized, and our model suggests a simple mechanism for both the phenomena of shear banding and discontinuous shear thickening in spatially homogeneous systems, without the need to introduce elastic friction.

public 01:39:44

Katia Koelle : Exploration, innovation, and selective sweeps in the ecology

  -   Nonlinear and Complex Systems ( 153 Views )

For many biological systems, the timescale at which ecological interactions occur is much shorter than the timescale at which evolutionary changes occur. For rapidly evolving pathogens such as influenza, however, this is not the case; influenza researchers therefore need to understand both the ecological interactions between the host and the pathogen and the virus?s evolutionary changes in order to ultimately control the disease in humans. Recently, a study looking at the evolutionary patterns of influenza showed that, while the virus?s genetic evolution occurred gradually, its antigenic evolution occurred in a punctuated manner. (Genetic evolution refers to how the virus?s nucleotides change over time; antigenic evolution refers to how the virus changes over time with respect to how our immune system recognizes it.) Previous research from our group hypothesized that these differences in evolutionary patterns could be explained by the presence of /neutral networks/ in the virus?s genotype space: networks of sequences that differ genetically from one another but fold into the same protein conformation and thereby share antigenic properties. Here, I will present a simple epidemiological model that implicitly incorporates these neutral networks. I show that this model can reproduce (1) the seasonal and interannual outbreak patterns of influenza, (2) the quantitative patterns of influenza?s antigenic evolution, and (3) the patterns of the virus?s genetic evolution, including its characteristic phylogenetic tree. I end with how this model may be useful in understanding patterns of viral diversity in other host species (e.g., avian and equine hosts).

public 01:34:47

Daniella E. Raveh : Nonlinear Dynamics of Aeroelastic Airfoil Systems in Buffeting Flows

  -   Nonlinear and Complex Systems ( 151 Views )

Transonic flows over airfoils at certain combinations of Mach numbers and steady mean angle of attack exhibit buffet; a phenomenon of large shock-wave oscillations due to flow separation and vortex shedding at a characteristic flow frequency. Buffet may occur even when the airfoil does not move. The seminar will present two recent studies of numerical simulations of an airfoil that a) undergoes prescribed harmonic oscillations, and b) is suspended by a spring in transonic buffeting flows. Both studies focus on the nonlinear interaction between the two oscillatory systems, namely the buffeting flow and the oscillating airfoil. Flow simulations of prescribed airfoil motions (using a Navier-Stokes turbulent flow solver) reveal a lock-in phenomenon. Certain combinations of amplitude and frequency of a prescribed airfoil oscillatory motion caused the buffet flow oscillations to lock into the prescribed frequency. The combinations of prescribed frequencies and amplitudes that cause lock-in present an .Arnold tongue. structure. There is a broad analogy between this flow phenomenon and the flow field of the Von Karman vortex street found behind a cylinder with the cylinder undergoing a prescribed oscillation. Flow simulations of an airfoil that is suspended on a spring reveal three distinct response characteristics, depending on the relationship of the elastic system.s natural frequency to the buffet frequency, and on the system.s mass ratio (the structural to fluid mass ratio). Elastic systems with natural frequencies that are lower than the buffet frequency exhibit a single-frequency response, with a frequency that is shifted form the buffet frequency towards the elastic natural frequency as the mass ratio is decreased (and the magnitude of the elastic response increases). On the other hand, an elastic system with a natural frequency that is the same as the buffet frequency exhibits resonance. Finally, elastic systems with natural frequencies that are higher than the buffet frequency exhibit a response with two distinct frequencies, that of the buffet and that of the elastic natural frequency. As long as the pitch amplitudes are small, the response is mostly at the buffet frequency. As the pitch amplitudes increase there is more power in the elastic natural frequency, and less in the buffet frequency. As the pitch amplitudes further grow, the response is in the elastic natural frequency solely, and the buffet frequency vanishes. To the best of the authors. knowledge the nonlinear dynamics of elastic systems in buffeting flows has not been reported previously. The authors are interested to learn whether similar phenomena are known in other research communities.