Jordan S. Ellenberg : Stability and Representations
- Gergen Lectures ( 278 Views )The notion of stability --speaking loosely, "sometimes an infinite sequence of vector spaces eventually starts being constant" -- appears in many branches of mathematics, perhaps most notably topology, where Harer's theorem about the stability of the homology of mapping class groups has driven decades of work. Some natural sequences of vector spaces are evidently NOT eventually constant: for instance, the space Q_n of quadratic polynomials in n variables has dimension (1/2)n(n-1), so gets larger and larger as n goes to infinity. On the other hand, Q_n carries an action of the symmetric group S_n by permutation of coordinates. We will discuss a new framework which allows us to speak meaningfully about what it means for a sequence of representations of S_n to be stable. It turns out that the structures we define are ubiquitous, appearing in topology (e.g. homology groups of configuration spaces and of moduli spaces of curves) algebraic combinatorics (e.g. the graded pieces of diagonal coinvariant algebras) and algebraic geometry (e.g. spaces of polynomials on discriminant and rank varieties.) We prove, for instance, that all these sequences of vector spaces have dimension which is eventually a polynomial in n.
Richard Schoen : Positive scalar curvature and connections with relativity
- Gergen Lectures ( 275 Views )In this series of three lectures we will describe positivity conditions on Riemannian metrics including the classical conditions of positive sectional, Ricci, and scalar curvature. We will discuss open problems and recent progress including our recent proof of the differentiable sphere theorem (joint with Simon Brendle). That proof employs the Ricci flow, so we will spend some time explaining that technique. Finally we will discuss problems related to positive scalar curvature including some high dimensional issues which occur in that theory. If time allows we will describe recent progress on black hole topologies. These lectures, especially the first two, are intended for a general audience.
Francis Brown : Periods, Galois theory and particle physics: General introduction to periods
- Gergen Lectures ( 270 Views )A period is a certain kind of complex number which can be written as an integral of algebraic quantities. Kontsevich and Zagier conjectured that all identities between periods can be obtained from the elementary rules of calculus. After discussing several examples I will focus on the case of multiple zeta values which were first introduced in a special case by Euler, and now occur in numerous branches of mathematics. They satisfy many families of relations which are the subject of several open conjectures.
Noga Alon : Gergen Lecture Seminar 3 Distance problems for Euclidean and other norms Lecture B: Coloring and ordering
- Gergen Lectures ( 0 Views )Distance problems in discrete geometry include fascinating examples of questions that are easy to state and hard to solve. Three of the best known problems of this type, raised in the 40s, are the Erd\H{o}s Unit Distance Problem, his Distinct Distances Problem, and the Hadwiger-Nelson Problem about the chromatic number of the unit distance graph in the plane. I will describe surprisingly tight recent solutions of the analogs of all three problems for typical norms, settling, in a strong form, questions and conjectures of Matou\v{s}ek, of Brass, of Brass, Moser and Pach, and of Chilakamarri. I will also discuss a related work about ordering points according to the sum of their distances from chosen vantage points. The proofs combine Combinatorial, Geometric and Probabilistic methods with tools from Linear Algebra, Topology, and Algebraic Geometry. Based on recent joint works with Matija Buci\'c and Lisa Sauermann, and with Colin Defant, Noah Kravitz and Daniel Zhu.