Aukosh Jagannath : Simple statistical tasks can be hard on average.
- Colloquium ( 231 Views )Consider the problem of recovering a rank 1 tensor of order k that has been subject to Gaussian noise. We will begin by reviewing results surrounding the statistical limits of maximum likelihood estimation for this problem and discuss an geometric analogue of the well-known BBP phase transition from the matrix setting. We then discuss recent analyses of the behavior of this problem from an optimization perspective. While the threshold for estimation occurs at a finite signal-to-noise ratio, it is expected that one needs a polynomially diverging signal-to-noise ratio to be able to do so efficiently. We present a recent study of the thresholds for efficient recovery for a simple family of algorithms, Langevin dynamics and gradient descent, to better understand the mechanism for this diverging statistical-to-computational gap. I will report on recent works with Ben Arous–Gheissari on the algorithmic threshold and Lopatto-Miolane on the statistical threshold.
Jonah Blasiak : Kronecker coefficients for one hook shape
- Colloquium ( 208 Views )The Kronecker coefficient $g_{\lambda \mu \nu}$ is the multiplicity of an irreducible $\mathcal{S}_n$-module $M_\nu$ in the tensor product $M_\lambda \otimes M_\mu$. A fundamental open problem in algebraic combinatorics is to find a positive combinatorial formula for these coefficients. We give such a formula in the case that one of the partitions is a hook shape. Our main tool is Haiman's mixed insertion, which is a generalization of Schensted insertion to colored words. Prior familiarity with combinatorics of words and tableaux will not be assumed.
Sarah Koch : Exploring moduli spaces in complex dynamics
- Colloquium ( 197 Views )A major goal in complex dynamics is to understand "dynamical moduli spaces"; that is, conformal conjugacy classes of holomorphic dynamical systems. One of the great successes in this regard is the study of the moduli space of quadratic polynomials; it is isomorphic to $\mathbb C$. This moduli space contains the famous Mandelbrot set, which has been extensively studied over the past 40 years. Understanding other dynamical moduli spaces to the same extent tends to be more challenging as they are often higher-dimensional. In this talk, we will begin with an overview of complex dynamics, focusing on the moduli space of quadratic rational maps, which is isomorphic to $\mathbb C^2$. We will explore this space, finding many interesting objects along the way. Note: special tea at 2:45.
Ken Ono : Cant you just feel the Moonshine?
- Colloquium ( 188 Views )Richard Borcherds won the Fields medal in 1998 for his proof of the Monstrous Moonshine Conjecture. Loosely speaking, the conjecture asserts that the representation theory of the Monster, the largest sporadic finite simple group, is dictated by the Fourier expansions of a distinguished set of modular functions. This conjecture arose from astonishing coincidences noticed by finite group theorists and arithmetic geometers in the 1970s. Recently, mathematical physicists have revisited moonshine, and they discovered evidence of undiscovered moonshine which some believe will have applications to string theory and 3d quantum gravity. The speaker and his collaborators have been developing the mathematical facets of this theory, and have proved the conjectures which have been formulated. These results include a proof of the Umbral Moonshine Conjecture, and Moonshine for the first sporadic finite simple group which does not occur as a subgroup or subquotient of the Monster. The most recent Moonshine (announced here) yields unexpected applications to the arithmetic elliptic curves thanks to theorems related to the Birch and Swinnerton-Dyer Conjecture and the Main Conjectures of Iwasawa theory for modular forms. This is joint work with John Duncan, Michael Griffin and Michael Mertens.
Jianfeng Lu : Multiscale analysis of solid materials: From electronic structure models to continuum theories
- Colloquium ( 187 Views )Modern material sciences focus on studies on the microscopic scale. This calls for mathematical understanding of electronic structure and atomistic models, and also their connections to continuum theories. In this talk, we will discuss some recent works where we develop and generalize ideas and tools from mathematical analysis of continuum theories to these microscopic models. We will focus on macroscopic limit and microstructure pattern formation of electronic structure models.
Tom Kepler : Microevolution in the Immune System: A Computational Systems Approach
- Colloquium ( 32 Views )Vaccines protect their recipients by inducing long-term structural changes in populations of immune cells. Part of that restructuring is exactly analogous to Darwinian Selection. New antibody molecules are created by somatic mutation of existing antibody genes. Subsequently, the immune cell populations that possess these mutated receptors overtake the "wild-type" immune cells due to the selective advantage they have acquired. Thus the immune system is vastly better prepared to recognize and eliminate the eliciting pathogen the next time around.
New sequencing and biosynthesis technologies, together with mathematical and computational tools, now allow us to investigate this fascinating and important phenomenon more deeply than ever before. I will illustrate this development with examples from the immune response to HIV infection.