Quicklists
public 01:34:53

Shankar Bhamidi : Two philosophies for random graphs and networks: Local weak convergence and scaling limits

  -   Probability ( 100 Views )

The last few years have witnessed an explosion in the number of mathematical models for random graphs and networks, as well as models for dynamics on these network models. In this context I would like to exhibit the power of two well known philosophies in attacking problems in random graphs and networks: First, local weak convergence: The idea of local neighborhoods of probabilistic discrete structures (such as random graphs) converging to the local neighborhood of limiting infinite objects has been known for a long time in the probability community and has proved to be remarkably effective in proving convergence results in many different situations. Here we shall give a wide range of examples of the above methodology. In particular, we shall show how the above methodology can be used to tackle problems of flows through random networks, where we have a random network with nodes communicating via least cost paths to other nodes. We shall show in some models on the completely connected network how the above methodology allows us to prove the convergence of the empirical distribution of edge flows, exhibiting how macroscopic order emerges from microscopic rules. Also, we shall show how for a wide variety of random trees (uniform random trees, preferential attachment trees arising from a wide variety of attachment schemes, models of trees from Statistical Physics etc) the above methodology shows the convergence of the spectral distribution of the adjacency matrix of theses trees to a limiting non random distribution function. Second, scaling limits: For the analysis of critical random graphs, one often finds that properly associated walks corresponding to the exploration of the graph encode a wide array of information (including the size of the maximal components). In this context we shall extend work of Aldous on Erdos-Renyi critical random graphs to the context of inhomogeneous random graph models. If time permits we shall describe the connection between these models and the multiplicative coalescent, arising from models of coagulation in the physical sciences.

public 01:29:55

Jun Wu : Analysis and Sums of 4 Squares

  -   Number Theory ( 150 Views )

public 01:11:20

Albion Lawrence : Closed String Tachyon Dynamics

  -   String Theory ( 14 Views )

public 01:14:52

Alan Guo : Affine semigroups and lattice points in polyhedra

  -   Colloquium ( 288 Views )

public 01:14:47

Gero Friesecke : Twisted X-rays and the determination of atomic structure

  -   Graduate/Faculty Seminar ( 116 Views )

We find exact solutions of Maxwell's equations which yield discrete Bragg-peak-type diffraction patterns for helical structures, in the same way in which plane waves yield discrete diffraction patterns of crystals. We call these waves 'twisted X-rays', on account of its 'twisted' waveform. As in the crystal case, the atomic structure can be determined from the diffraction pattern. We demonstrate this by recovering the structure of the Pf1 virus (Protein Data Bank entry 1pfi) from its simulated diffraction data under twisted X-rays.

The twisted waves are found in a systematic way, by first answering a simpler question: could we derive plane waves from the goal that the diffraction pattern crystals is discrete? The answer is yes. Constructive interference at the intensity maxima trivially comes from the fact that the waves share the discrete translation symmetry of crystals. Destructive interference off the maxima is much more subtle, and - as I will explain in the talk - can be traced to the fact that the waves have a larger, continuous translation symmetry. Replacing the continuous translation group by the continuous helical group which extends the discrete symmetry of helical structures leads to twisted waves.

Once the waveforms are found, discreteness (or mathematically, extreme sparsity) of the diffraction pattern of helices under these waves can be proven by appealing to the generalisation of the Poisson summation formula to abelian groups which goes back to A. Weil, whose motivation came from number theory rather than structural biology.

Joint work with Dominik Juestel (TUM) and Richard James (University of Minnesota), SIAM J. Appl. Math. 76 (3), 2016, and Acta Cryst. A72, 190, 2016.