Quicklists
public 01:34:42

Jacob Bedrossian : Positive Lyapunov exponents for 2d Galerkin-Navier-Stokes with stochastic forcing

  -   Uploaded by schrett ( 25 Views )

In this talk we discuss our recently introduced methods for obtaining strictly positive lower bounds on the top Lyapunov exponent of high-dimensional, stochastic differential equations such as the weakly-damped Lorenz-96 (L96) model or Galerkin truncations of the 2d Navier-Stokes equations (joint with Alex Blumenthal and Sam Punshon-Smith). This hallmark of chaos has long been observed in these models, however, no mathematical proof had previously been made for any type of deterministic or stochastic forcing. The method we proposed combines (A) a new identity connecting the Lyapunov exponents to a Fisher information of the stationary measure of the Markov process tracking tangent directions (the so-called "projective process"); and (B) an L1-based hypoelliptic regularity estimate to show that this (degenerate) Fisher information is an upper bound on some fractional regularity. For L96 and GNSE, we then further reduce the lower bound of the top Lyapunov exponent to proving that the projective process satisfies Hörmander's condition. I will also discuss the recent work of Sam Punshon-Smith and I on verifying this condition for the 2d Galerkin-Navier-Stokes equations in a rectangular, periodic box of any aspect ratio using some special structure of matrix Lie algebras and ideas from computational algebraic geometry.

public 46:08

Pratima Hebbar, Probability Seminar

  -   Uploaded by nolen ( 43 Views )

Pratima Hebbar, Probability Seminar on October 21, 2021

public 01:34:44

Rahul Dalal : Counting level-1, quaternionic automorphic representations on G2

  -   Uploaded by schrett ( 28 Views )

Quaternionic automorphic representations are one attempt to generalize to other groups the special place holomorphic modular forms have among automorphic representations of GL2. Like holomorphic modular forms, they are defined by having their real component be one of a particularly nice class (in this case, called quaternionic discrete series). We count quaternionic automorphic representations on the exceptional group G2 by developing a G2 version of the classical Eichler-Selberg trace formula for holomorphic modular forms. There are two main technical difficulties. First, quaternionic discrete series come in L-packets with non-quaternionic members and standard invariant trace formula techniques cannot easily distinguish between discrete series with real component in the same L-packet. Using the more modern stable trace formula resolves this issue. Second, quaternionic discrete series do not satisfy a technical condition of being "regular", so the trace formula can a priori pick up unwanted contributions from automorphic representations with non-tempered components at infinity. Applying some computations of Mundy, this miraculously does not happen for our specific case of quaternionic representations on G2. Finally, we are only studying level-1 forms, so we can apply some tricks of Chenevier and Taïbi to reduce the problem to counting representations on the compact form of G2 and certain pairs of modular forms. This avoids involved computations on the geometric side of the trace formula.