Quicklists
public 01:14:39

Ralph Smith : Model Development and Control Design for High Performance Nonlinear Smart Material Systems

  -   Applied Math and Analysis ( 141 Views )

High performance transducers utilizing piezoceramic, electrostrictive, magnetostrictive or shape memory elements offer novel control capabilities in applications ranging from flow control to precision placement for nanoconstruction. To achieve the full potential of these materials, however, models, numerical methods and control designs which accommodate the constitutive nonlinearities and hysteresis inherent to the compounds must be employed. Furthermore, it is advantageous to consider material characterization, model development, numerical approximation, and control design in concert to fully exploit the novel sensor and actuator capabilities of these materials in coupled systems.

In this presentation, the speaker will discuss recent advances in the development of model-based control strategies for high performance smart material systems. The presentation will focus on the development of unified nonlinear hysteresis models, inverse compensators, reduced-order approximation techniques, and nonlinear control strategies for high precision or high drive regimes. The range for which linear models and control methods are applicable will also be outlined. Examples will be drawn from problems arising in structural acoustics, high speed milling, deformable mirror design, artificial muscle development, tendon design to minimize earthquake damage, and atomic force microscopy.

public 19:55

Top Chongchitmate : PRUV Talks

  -   Undergraduate Seminars ( 212 Views )

public 19:37

Brian Choi : PRUV Talks

  -   Undergraduate Seminars ( 250 Views )

public 01:49:41

Mark Stern : Grant Workshop

  -   Graduate/Faculty Seminar ( 151 Views )

public 01:34:29

Harold Layton : Irregular Flow Oscillations in the Nephrons of Spontaneously Hypertensive Rats

  -   Graduate/Faculty Seminar ( 143 Views )

The nephron is the functional unit of the kidney. The flow rate in each nephron is regulated, in part, by tubuloglomerular feedback, a negative feedback loop. In some parameter regimes, this feedback system can exhibit oscillations that approximate limit-cycle oscillations. However, nephron flow in spontaneously hypertensive rats (SHR) can exhibit highly irregular oscillations similar to deterministic chaos. We used a mathematical model of tubuloglomerular feedback (TGF) to investigate potential sources of the irregular oscillations and the associated complex power spectra in SHR. A bifurcation analysis of the TGF model equation was performed by finding roots of the characteristic equation, and numerical simulations of model solutions were conducted to assist in the interpretation of the analysis. Four potential sources of spectral complexity in SHR were identified: (1) bifurcations that produce qualitative changes in solution type, leading to multiple spectrum peaks and their respective harmonic peaks; (2) continuous lability in delay parameters, leading to broadening of peaks and their harmonics; (3) episodic lability in delay parameters, leading to multiple peaks and their harmonics; and (4) coupling of small numbers of nephrons, leading to broadening of peaks, multiple peaks, and their harmonics. We conclude that the complex power spectra in SHR may be explained by the inherent complexity of TGF dynamics, which may include solution bifurcations, variation in TGF parameters, and coupling between small numbers of neighboring nephrons.

public 01:34:44

Brad Murray : TBA

  -   Nonlinear and Complex Systems ( 161 Views )