Quicklists
public 01:34:49

Andrew Christlieb : A high order adaptive mesh refinement algorithm for hyperbolic conservation laws based on weighted essentially non-oscillatory methods

  -   Applied Math and Analysis ( 138 Views )

In this work, we combine the adaptive mesh refinement (AMR) framework with high order finite difference weighted essentially non-oscillatory (WENO) method in space and TVD Runge-Kutta (RK) method in time (WENO-RK) for hyperbolic conservation laws. Our goal is to realize mesh adaptivity in the AMR framework, while maintaining very high (higher than second) order accuracy of the WENO-RK method in the finite difference setting. To maintain high order accuracy, we use high order prolongation in both space (WENO interpolation) and time (Hermite interpolation) from the coarse to find grid, and at ghost points. The resulting scheme is high order accuracy, robust and efficient, due to the mesh adaptivity and has high order accuracy in both space and time. We have experimented the third and fifth order AMR-finite difference WENO-RK schemes. The accuracy of the scheme is demonstrated by applying the method to several smooth test problems, and the quality and efficiency are demonstrated by applying the method to the shallow water and Euler equations with different challenging initial conditions. From our numerical experiment, we conclude a significant improvement of the fifth order AMR - WENO scheme over the third order one, not only in accuracy for smooth problems, but also in its ability in resolving complicated solution structures, which we think is due to the very low numerical diffusion of high order schemes. This work is in collaboration with Dr. Chaopeng Shen and Professor Jing-Mei Qiu.

public 01:34:50

Shahed Sharif : The Birch/Swinnerton-Dyer Conjecture

  -   Algebraic Geometry ( 124 Views )

public 01:34:47

Brian Utter : Jamming in Vibrated Granular Systems

  -   Nonlinear and Complex Systems ( 116 Views )

Granular materials exist all around us, from avalanches in nature to the mixing of pharmaceuticals, yet the behavior of these ``fluids'' is poorly understood. Their flow can be characterized by the continuous forming and breaking of a strong force network resisting flow. This jamming/unjamming behavior is typical of a variety of systems, including granular flows, and is influenced by factors such as grain packing fraction, applied shear stress, and the random kinetic energy of the particles. I'll present experiments on quasi-static shear and free-surface granular flows under the influence of external vibrations. By using photoelastic grains, we are able to measure both particle trajectories and the local force network in these 2D flows. We find through particle tracking that dense granular flow is composed of comparable contributions from the mean flow, affine, and non-affine deformations. During shear, sufficient external vibration weakens the strong force network and reduces the amount of flow driven by sidewalls. In a rotating drum geometry, large vibrations induce failure as might be expected, while small vibration leads to strengthening of the pile. The avalanching behavior is also strongly history dependent, as evident when the rotating drum is driven in an oscillatory motion, and we find that sufficient vibration erases the memory of the pile. These results point to the central role of the mobilization of friction in quasi-static granular flow.

public 01:14:52

Ezra Miller : K-theory of toric varieties

  -   Colloquium ( 189 Views )

public 01:39:53

David Barton : Numerical continuation for investigating nonlinear systems: from model to experiment

  -   Nonlinear and Complex Systems ( 97 Views )

Numerical continuation is a tool for investigating the bifurcation structure of a nonlinear dynamical system with respect to the system parameters. It is most often used to "carve up" parameter space into regions of qualitatively different behaviour by finding and tracking bifurcations (e.g., Hopf bifurcations) as the system parameters change. This talk will give an introduction to the theory behind numerical continuation and go on to discuss recent developments in the field.

Particular attention will be paid to numerical continuation of systems with non-smoothness, motivated by the example of intermittent contacts in a model of orthogonal cutting (turning). Rich dynamical behaviour is present in this model due to the presence of a grazing bifurcation which denotes the transition point from constant contact of the cutting tool with the workpiece to intermittent contact. Using numerical continuation it is possible to elucidate the full bifurcation structure of the system, something that would be extremely difficult with other methods.

Finally, numerical continuation will be demonstrated as applied to a physical experiment (so-called control-based continuation): a nonlinear energy harvesting device. Numerical continuation in this context allows the investigation of a physical device without prior knowledge of a model. Both stable and unstable motions can be investigated and bifurcations found directly. As such these investigations may aid in establishing what an appropriate mathematical model could be.

public 01:34:52

Sonja Mapes : TBA

  -   Graduate/Faculty Seminar ( 100 Views )

public 01:09:19

Benoit Charbonneau : Hilbert series and K-polynomials

  -   Colloquium ( 235 Views )

public 01:34:53

Shankar Bhamidi : Two philosophies for random graphs and networks: Local weak convergence and scaling limits

  -   Probability ( 100 Views )

The last few years have witnessed an explosion in the number of mathematical models for random graphs and networks, as well as models for dynamics on these network models. In this context I would like to exhibit the power of two well known philosophies in attacking problems in random graphs and networks: First, local weak convergence: The idea of local neighborhoods of probabilistic discrete structures (such as random graphs) converging to the local neighborhood of limiting infinite objects has been known for a long time in the probability community and has proved to be remarkably effective in proving convergence results in many different situations. Here we shall give a wide range of examples of the above methodology. In particular, we shall show how the above methodology can be used to tackle problems of flows through random networks, where we have a random network with nodes communicating via least cost paths to other nodes. We shall show in some models on the completely connected network how the above methodology allows us to prove the convergence of the empirical distribution of edge flows, exhibiting how macroscopic order emerges from microscopic rules. Also, we shall show how for a wide variety of random trees (uniform random trees, preferential attachment trees arising from a wide variety of attachment schemes, models of trees from Statistical Physics etc) the above methodology shows the convergence of the spectral distribution of the adjacency matrix of theses trees to a limiting non random distribution function. Second, scaling limits: For the analysis of critical random graphs, one often finds that properly associated walks corresponding to the exploration of the graph encode a wide array of information (including the size of the maximal components). In this context we shall extend work of Aldous on Erdos-Renyi critical random graphs to the context of inhomogeneous random graph models. If time permits we shall describe the connection between these models and the multiplicative coalescent, arising from models of coagulation in the physical sciences.