Hugo Zhou : PL surfaces and genus cobordism
- Uploaded by schrett ( 69 Views )Every knot in S^3 bounds a PL disk in the four ball. But this is no longer true for knots in other three manifolds, as demonstrated first by Akbulut, who constructed a knot which does not bound any PL disk in a specific contractible four manifold. Then Levine showed that there exist knots that do not bound a PL disk in any homology four ball. What happens if we relax the condition of bounding PL disk to bounding a PL surface with some given genus? In the joint work with Hom and Stoffregen, we proved that for each n, there exists a knot K_n in an integer homology sphere that does not bound a PL surface of genus n in any homology four ball. The proof uses Heegaard Floer homology. More specifically, the obstruction comes from knot cobordism maps by Zemke and the construction uses recent filtered mapping cone formula for cables of the knot meridian.
Chindu Mohanakumar : Coherent orientations of DGA maps associated to exact Lagrangian cobordisms
- Uploaded by schrett ( 85 Views )We discuss the DGA map induced by an exact Lagrangian cobordism, and an analytic strategy to lift the map to integer coefficients, introduced by Fukaya, Oh, Ohta and Ono and further adapted by Ekholm, Etnyre, and Sullivan and Karlsson respectively. We then explain how this strategy can be applied to find a concrete combinatorial formula for a mini-dipped pinch move, thereby completely determining the integral DGA maps for all decomposable, orientable Lagrangian cobordisms. If time permits, we will show how to obtain this formula in a model case. We will also go into future potential work, including applications to Heegaard Floer Homology and nonorientable cobordisms.
Casey Diekman : Data Assimilation and Dynamical Systems Analysis of Circadian Rhythmicity and Entrainment
- Uploaded by schrett ( 71 Views )Circadian rhythms are biological oscillations that align our physiology and behavior with the 24-hour environmental cycles conferred by the Earth’s rotation. In this talk, I will discuss two projects that focus on circadian clock cells in the brain and the entrainment of circadian rhythms to the light-dark cycle. Most of what we know about the electrical activity of circadian clock neurons comes from studies of nocturnal (night-active) rodents, hindering the translation of this knowledge to diurnal (day-active) humans. In the first part of the talk, we use data assimilation and patch-clamp recordings from the diurnal rodent Rhabdomys pumilio to build the first mathematical models of the electrophysiology of circadian neurons in a day-active species. We find that the electrical activity of circadian neurons is similar overall between nocturnal and diurnal rodents but that there are some interesting differences in their responses to inhibition. In the second part of the talk, we use tools from dynamical systems theory to study the reentrainment of a model of the human circadian pacemaker following perturbations that simulate jet lag. We show that the reentrainment dynamics are organized by invariant manifolds of fixed points of a 24-hour stroboscopic map and use these manifolds to explain a rapid reentrainment phenomenon that occurs under certain jet lag scenarios.
Matthew Litman : Markoff-type K3 Surfaces: Local and Global Finite Orbits
- Uploaded by schrett ( 67 Views )Markoff triples were introduced in 1879 and have a rich history spanning many branches of mathematics. In 2016, Bourgain, Gamburd, and Sarnak answered a long standing question by showing there exist infinitely many composite Markoff numbers. Their proof relied on showing the connectivity for an infinite family of graphs associated to Markoff triples modulo p for infinitely many primes p. In this talk we discuss what happens for the projective analogue of Markoff triples, that is surfaces W in P^1 x P^1 x P^1 cut out by the vanishing of a (2,2,2)-form that admit three non-commuting involutions and are fixed under coordinate permutations and double sign changes. Inspired by the work of B-G-S we investigate such surfaces over finite fields, specifically their orbit structure under their automorphism group. For a specific one-parameter subfamily W_k of such surfaces, we construct finite orbits in W_k(C) by studying small orbits that appear in W_k(F_p) for many values of p and k. This talk is based on joint work with E. Fuchs, J. Silverman, and A. Tran.
Yeansu Kim : CLASSIFICATION OF DISCRETE SERIES REPRESENTATIONS AND ITS APPLICATIONS ON THE GENERIC LOCAL LANGLANDS CORRESPONDENCE FOR ODD GSPIN GROUPS
- Uploaded by schrett ( 77 Views )The classification of discrete series is one main subject in Langlands program with numerous applications. We first explain the result on the classification of discrete series of odd GSpin groups, generalizing the Mœglin-Tadi ́c classification for classical groups. Note that our approach will give alternate proof for classical groups. This is a joint work with Ivan Mati ́c. We also explain its application on the generic local Langlands correspondence via Langlands-Shahidi method. If time permits, we will explain possible generalization of those to other groups, which is work in progress
Matt Junge : Ballistic Annihilation
- Uploaded by schrett ( 66 Views )In the late 20th century, statistical physicists introduced a chemical reaction model called ballistic annihilation. In it, particles are placed randomly throughout the real line and then proceed to move at independently sampled velocities. Collisions result in mutual annihilation. Many results were inferred by physicists, but it wasn’t until recently that mathematicians joined in. I will describe my trajectory through this model. Expect tantalizing open questions.
Jerry Yu Fu : A density theorem towards p-adic monodromy
- Uploaded by schrett ( 168 Views )We investigate the $p$-adic monodromy of certain kinds of abelian varieties in $\mathcal{A}_{g}$ and prove a formal density theorem for the locus of deformations with big monodromy. Also, we prove that the small monodromy locus of the deformation space of a supersingular elliptic curve is $p$-adic nowhere dense. The approach is based on a congruence condition of $p$-divisible groups and transform of data between the Rapoport-Zink spaces and deformation spaces.
Huajie Li : On an infinitesimal variant of Guo-Jacquet trace formulae
- Uploaded by schrett ( 88 Views )A well-known theorem of Waldspurger relates central values of automorphic L-functions for GL(2) to automorphic period integrals over non-split tori. His result was reproved by Jacquet via the comparison of relative trace formulae. Guo-Jacquets conjecture aims to generalise Waldspurgers result as well as Jacquets approach to higher dimensions. In this talk, we shall first recall the background of Guo-Jacquet trace formulae. Then we shall focus on an infinitesimal variant of these formulae and try to explain several results on the local comparison of most terms. Our infinitesimal study is expected to be relevant to the study of geometric sides of the original Guo-Jacquet trace formulae.
Oguz Savk : Bridging the gaps between homology planes and Mazur manifolds.
- Uploaded by ezy3 ( 181 Views )We call a non-trivial homology 3-sphere a Kirby-Ramanujam sphere if it bounds a homology plane, an algebraic complex smooth surface with the same homology groups of the complex plane. In this talk, we present several infinite families of Kirby-Ramanujam spheres bounding Mazur type 4-manifolds, compact contractible smooth 4-manifolds built with only 0-, 1-, and 2-handles. Such an interplay between complex surfaces and 4-manifolds was first observed by Ramanujam and Kirby around nineteen-eighties. This is upcoming joint work with Rodolfo Aguilar Aguilar.