public 01:14:53

Stephan Huckemann : Statistical challenges in shape prediction of biomolecules

  -   Uploaded by schrett ( 17 Views )

The three-dimensional higher-order structure of biomolecules determines their functionality. While assessing primary structure is fairly easily accessible, reconstruction of higher order structure is costly. It often requires elaborate correction of atomic clashes, frequently not fully successful. Using RNA data, we describe a purely statistical method, learning error correction, drawing power from a two-scale approach. Our microscopic scale describes single suites by dihedral angles of individual atom bonds; here, addressing the challenge of torus principal component analysis (PCA) leads to a fundamentally new approach to PCA building on principal nested spheres by Jung et al. (2012). Based on an observed relationship with a mesoscopic scale, landmarks describing several suites, we use Fréchet means for angular shape and size-and-shape, correcting within-suite-backbone-to-backbone clashes. We validate this method by comparison to reconstructions obtained from simulations approximating biophysical chemistry and illustrate its power by the RNA example of SARS-CoV-2.

This is joint work with Benjamin Eltzner, Kanti V. Mardia and Henrik Wiechers.


Eltzner, B., Huckemann, S. F., Mardia, K. V. (2018): Torus principal component analysis with applications to RNA structure. Ann. Appl. Statist. 12(2), 1332?1359.

Jung, S., Dryden, I. L., Marron, J. S. (2012): Analysis of principal nested spheres. Biometrika, 99 (3), 551-568

Mardia, K. V., Wiechers, H., Eltzner, B., Huckemann, S. F. (2022). Principal component analysis and clustering on manifolds. Journal of Multivariate Analysis, 188, 104862, https://www.sciencedirect.com/science/article/pii/S0047259X21001408

Wiechers, H., Eltzner, B., Mardia, K. V., Huckemann, S. F. (2021). Learning torus PCA based classification for multiscale RNA backbone structure correction with application to SARS-CoV-2. To appear in the Journal of the Royal Statistical Society, Series C, bioRxiv https://doi.org/10.1101/2021.08.06.455406

public 01:34:47

Zachary Bezemek : Interacting particle systems in multiscale environments: asymptotic analysis

  -   Uploaded by schrett ( 32 Views )

This talk is an overview of my thesis work, which consists of 3 projects exploring the effect of multiscale structure on a class of interacting particle systems called weakly interacting diffusions. In the absence of multiscale structure, we have a collection of N particles, with the dynamics of each being described by the solution to a stochastic differential equation (SDE) whose coefficients depend on that particle's state and the empirical measure of the full particle configuration. It is well known in this setting that as N approaches infinity, the particle system undergoes the ``propagation of chaos,'' and its corresponding sequence of empirical measures converges to the law of the solution to an associated McKean-Vlasov SDE. Meanwhile, in our multiscale setting, the coefficients of the SDEs may also depend on a process evolving on a timescale of order 1/\epsilon faster than the particles. As \epsilon approaches 0, the effect of the fast process on the particles' dynamics becomes deterministic via stochastic homogenization. We study the interplay between homogenization and the propagation of chaos via establishing large deviations and moderate deviations results for the multiscale particles' empirical measure in the combined limit as N approaches infinity and \epsilon approaches 0. Along the way, we derive rates of homogenization for slow-fast McKean-Vlasov SDEs.

public 01:34:43

Ngo Bao Chau : On the generalized Hitchin fibration and regular quotient

  -   Uploaded by schrett ( 40 Views )