Quicklists
public 01:34:51

Christopher Cornwell : TBA

  -   Graduate/Faculty Seminar ( 142 Views )

TBA

public 01:24:58

Pascal Maillard : Interval fragmentations with choice

  -   Probability ( 132 Views )

Points fall into the unit interval according to a certain rule, splitting it up into fragments. An example rule is the following: at each step, two points are randomly drawn from the unit interval and the one that falls into the smaller (or larger) interval is discarded, while the other one is kept. This process is inspired by the so-called "power of choice" paradigm originating in the computer science literature on balanced load allocation models. The question of interest is how much the rule affects the geometry of the point cloud. With Elliot Paquette [1] we introduced a general version of this interval fragmentation model and showed that the empirical distribution of rescaled interval lengths converges almost surely to a deterministic probability measure. I will report on this work as well as on work in progress [2] where we show that the empirical measure of the points converges almost surely to the uniform distribution. The proofs involve techniques from stochastic approximation, non-linear integro-differential equations, ergodic theory for Markov processes and perturbations of semigroups on L^p spaces, amongst other things. [1] Maillard, P., & Paquette, E. (2016). Choices and intervals. Israel Journal of Mathematics, 212(1), 337Â?384. [2] Maillard, P., & Paquette, E. (in preparation). Interval fragmentations with choice: equidistribution and the evolution of tagged fragments

public 01:34:47

Brian Utter : Jamming in Vibrated Granular Systems

  -   Nonlinear and Complex Systems ( 129 Views )

Granular materials exist all around us, from avalanches in nature to the mixing of pharmaceuticals, yet the behavior of these ``fluids'' is poorly understood. Their flow can be characterized by the continuous forming and breaking of a strong force network resisting flow. This jamming/unjamming behavior is typical of a variety of systems, including granular flows, and is influenced by factors such as grain packing fraction, applied shear stress, and the random kinetic energy of the particles. I'll present experiments on quasi-static shear and free-surface granular flows under the influence of external vibrations. By using photoelastic grains, we are able to measure both particle trajectories and the local force network in these 2D flows. We find through particle tracking that dense granular flow is composed of comparable contributions from the mean flow, affine, and non-affine deformations. During shear, sufficient external vibration weakens the strong force network and reduces the amount of flow driven by sidewalls. In a rotating drum geometry, large vibrations induce failure as might be expected, while small vibration leads to strengthening of the pile. The avalanching behavior is also strongly history dependent, as evident when the rotating drum is driven in an oscillatory motion, and we find that sufficient vibration erases the memory of the pile. These results point to the central role of the mobilization of friction in quasi-static granular flow.