Sayan Banerjee : Singular Reflected Diffusions
- Probability ( 384 Views )I will talk about some models coming from Physics and Queueing Theory that give rise to singular reflected processes in their diffusion limit. Such diffusions are characterized by non-elliptic generators (which are not even hypoelliptic) in the interior, and ergodicity arises from non-trivial interactions between the diffusion, drift and reflection. I will introduce a regenerative process approach which identifies renewal times in diffusion paths and analyzes excursions between successive renewal times. This provides a detailed description of the stationary distribution even when closed form expressions are unavailable. Based on joint works with Chris Burdzy, Brendan Brown, Mauricio Duarte and Debankur Mukherjee.
Wei Ho : Integral points on elliptic curves
- Algebraic Geometry ( 349 Views )Elliptic curves are fundamental and well-studied objects in arithmetic geometry. However, much is still not known about many basic properties, such as the number of rational points on a "random" elliptic curve. We will discuss some conjectures and theorems about this "arithmetic statistics" problem, and then show how they can be applied to answer a related question about the number of integral points on elliptic curves over Q. In particular, we show that the second moment (and the average) for the number of integral points on elliptic curves over Q is bounded (joint work with Levent Alpoge)
Luca Di Cerbo : Extended Graph Manifolds, Dehn Fillings, and Einstein Metrics
- Geometry and Topology ( 301 Views )In this talk, I will present some new topological obstructions for solving the Einstein equations (in Riemannian signature) on a large class of closed four-manifolds. Finally, I will show that complex-hyperbolic Einstein Dehn filling compactification cannot possibly performed in dimension four. This is in striking contrast with the real-hyperbolic case, and it answers (negatively) a fifteen years old question of Michael Anderson. If time permits, I will conclude with some tantalizing open problems both in dimension four and in higher dimensions. Part of this work is joint with M. Golla (Universit\â??e de Nantes).
Jordan S. Ellenberg : Stability and Arithmetic Counting Problems
- Gergen Lectures ( 281 Views )A big theme in contemporary number theory is "arithmetic statistics": what does the class group of a random number field look like? What do the zeroes of a random L-function look like? What does a random rational point on a variety look iike? In this talk we will explain how arithmetic statistics problems over function fields are naturally tied to topological questions about stability for homology groups of certain moduli spaces; in particular, we will explain how a stability theorem for Hurwitz spaces (moduli spaces of finite branched covers of the line) can be used to prove a version of the Cohen-Lenstra conjectures over function fields. There will be some overlap with a talk I gave at Duke in December 2009, but many things which were speculations then are theorems now.
Sarah J Frei : Moduli spaces of sheaves on K3 surfaces and Galois representations
- Algebraic Geometry ( 263 Views )Moduli spaces of sheaves on K3 surfaces have been well-studied when defined over the complex numbers, because they are one of the known families of hyperkaehler varieties. However, many of their arithmetic properties when defined over an arbitrary field are still unknown. In this talk, I will tell you about a new result in this direction: two such moduli spaces of the same dimension, when defined over a finite field, have the same number of points defined over every finite field extension of the base field, which is surprising when the moduli spaces are not birational. The way to get at this result is to study the cohomology groups of the moduli spaces as Galois representations. Over an arbitrary field, we find that all of the cohomology groups are isomorphic as Galois representations.
Joseph Rabinoff : From Diophantine equations to p-adic analytic geometry
- Presentations ( 254 Views )A Diophantine equation is a polynomial equation in several variables, generally with integer coefficients, like x3 + y3 = z3. Provably finding all integer solutions of a Diophantine equation is a storied mathematical problem that is easy to state and notoriously difficult to solve. The method of Chabauty--Coleman is one particularly successful technique for ruling out extraneous solutions of a certain class of Diophantine equations. The method is p-adic in nature, and involves producing p-adic analytic functions that vanish on all integer-valued solutions. I will discuss work with Katz and Zureick-Brown on finding uniform bounds on the number of rational points on a curve of fixed genus, defined over a number field, subject to a (conjecturally weak) restriction on its Jacobian. The same technique also makes progress on the uniform Manin-Mumford conjecture on the size of torsion packets on curves of fixed genus.
John McCuan : Minimal graphs with jump discontinuities
- Geometry and Topology ( 254 Views )I will discuss some examples of minimal graphs with jump discontinuities in their boundaries. Robert Huff and I constructed these examples in response to a question of John Urbas: Is it possible for a minimal graph over a smooth annular domain to have an isolated jump discontinuity on the inner boundary component? I will also give a brief overview of the boundary consistency problem for Di Giorgi's generalized solutions of the minimal surface equation and discuss this question in that context. The construction of the examples uses the Weierstrass representation and the developing map introduced by Huff in the study of capillary problems.
Lisa Hartung : Extreme Level Sets of Branching Brownian Motion
- Probability ( 253 Views )Branching Brownian motion is a classical process in probability theory belonging to the class of Â?Log-correlated random fieldsÂ?. We study the structure of extreme level sets of this process, namely the sets of particles whose height is within a fixed distance from the order of the global maximum. It is well known that such particles congregate at large times in clusters of order-one genealogical diameter around local maxima which form a Cox process in the limit. We add to these results by finding the asymptotic size of extreme level sets and the typical height and shape of those clusters which carry such level sets. We also find the right tail decay of the distribution of the distance between the two highest particles. These results confirm two conjectures of Brunet and Derrida.(joint work with A. Cortines, O Louidor)
Min Kang : Tropically Linear Interface Growth Models
- Applied Math and Analysis ( 249 Views )We first discuss a general method to derive macroscopic laws from certain microscopic interactions that can be applied to a large class of particle systems. In particular we consider a broad class of systems that are linear in a special algebra, so-called tropical algebra. Some natural connections among the scaling limits of these random systems, the solutions to specific partial differential equations (Hamilton-Jacobi type) and combinatorial optimization problems have been noticed. If time allows, we further discuss a useful application of the variational formula (microscopic version of Hopf-Lax formula) to a well-known interacting particle system, totally asymmetric simple exclusion process.
Subhankar Dey : Cable knots are not thin
- Geometry and Topology ( 246 Views )Thurston's geometrization conjecture and its subsequent proof for Haken manifolds distinguish knots in S^3 by the geometries in the complement of the knots. While the definition of alternating knots make use of nice knot diagrams, Knot Floer homology, a knot invariant toolbox, defined by Ozsvath-Szabo and Rasumussen, generalizes the definition of alternating knots in the context of knot Floer homology and defines family of quasi-alternating knots which contains all alternating knots. Using Lipshitz-Ozsvath-Thurston's bordered Floer homology, we prove a partial affirmation of a folklore conjecture in knot Floer theory, which bridges these two viewpoints of looking at knots.
Tye Lidman : Homology cobordisms with no 3-handles
- Geometry and Topology ( 243 Views )Homology cobordisms are a special type of manifold which are relevant to a variety of areas in geometric topology, including knot theory and triangulability. We study the behavior of a variety of invariants under a particular family of four-dimensional homology cobordisms which naturally arise from Stein manifolds. This is joint work with Ali Daemi, Jen Hom, Shea Vela-Vick, and Mike Wong.
Steven Sam : Noetherianity in representation theory
- Presentations ( 242 Views )Abstract: Representation stability is an exciting new area that combines ideas from commutative algebra and representation theory. The meta-idea is to combine a sequence of objects together using some newly defined algebraic structure, and then to translate abstract properties about this structure to concrete properties about the original object of study. Finite generation is a particularly important property, which translates to the existence of bounds on algebraic invariants, or some predictable behavior. I'll discuss some examples coming from topology (configuration spaces) and algebraic geometry (secant varieties).
Dmitry Vagner : Higher Dimensional Algebra in Topology
- Graduate/Faculty Seminar ( 241 Views )In his letter, "Pursuing Stacks," Grothendieck advocated to Quillen for the use of "higher" categories to encode the higher homotopy of spaces. In particular, Grothendieck dreamt of realizing homotopy n-types as n-groupoids. This powerful idea both opened the field of higher dimensional algebra but also informed a paradigm in which the distinction between topology and algebra is blurred. Since then, work by Baez and Dolan among others further surveyed the landscape of higher categories and their relationship to topology. In this talk, we will explore this story, beginning with some definitions and examples of higher categories. We will then proceed to explain "the periodic table of higher categories" and the four central hypotheses of higher category theory. In particular, these give purely algebraic characterizations of homotopy types, manifolds, and generalized knots; and account for the general phenomena of stabilization in topology. No prerequisites beyond basic ideas in algebraic topology will be expected.
Tony Feng : Steenrod operations and the Artin-Tate pairing
- Number Theory ( 240 Views )In 1966 Artin and Tate constructed a canonical pairing on the Brauer group of a surface over a finite field, and conjectured it to be alternating. This duality has analogous incarnations across arithmetic and topology, namely the Cassels-Tate pairing for a Jacobian variety, and the linking form on a 5-manifold. I will explain a proof of the conjecture, which is based on a surprising connection to Steenrod operations.
Alex Waldron : Yang-Mills flow on special holonomy manifolds
- Geometry and Topology ( 234 Views )I will describe an upcoming paper with Goncalo Oliveira investigating the properties of Yang-Mills flow on base manifolds with restricted holonomy, generalizing known results from the 4-d and Kahler cases. We show that finite-time blowup is governed by the F^7 component of the curvature in the G_2 and Spin(7) cases, and by the appropriate curvature component in the remaining cases on Berger's list. Assuming that this component remains bounded along the flow, we show that the infinite-time bubbling set is calibrated by the defining (n-4)-form.
Junyan Xu : Bounds for certain families of character sums: how to obtain strong bounds with more exceptions from weak bounds with fewer exceptions
- Number Theory ( 231 Views )I will first introduce some generalities about exponential sums, in particular that square-root cancellation is expected for many algebraic character sums over the rational points of an algebraic variety over a finite field. I will then set the stage for my work: we consider a family of exponential sums, which in our case is parameterized by the rational points of a variety (the parameter space). Our task is to obtain a good bound on the number of exceptional ("bad") parameters for which square-root cancellations fail. Following an idea of Michael Larsen, we consider even moments of the family of exponential sums. If the summands are of certain product form, a transformation can be applied to produce another family of exponential sums (of the same type). If the summands are products of multiplicative characters composed with certain polynomial functions, a weak bound can then be applied to the character sums in this family (with few bad parameters), yielding bounds for the moments. We know from the theory of l-adic sheaves that the parameter space for the original family have a stratification by smooth varieties, which is uniform in some sense as long as the degrees of the characters and polynomials are bounded. Moreover, on each stratum the character sum behave in certain uniform way, so that we can talk about good and bad strata. The bounds on moments yield bounds on dimensions of bad strata, which in turn yield bounds on the number of bad parameters (in any box) of the original family. Though not optimal, the bounds already imply nontrivial Burgess bounds for forms, in joint work with Lillian Pierce.
Aukosh Jagannath : Simple statistical tasks can be hard on average.
- Colloquium ( 231 Views )Consider the problem of recovering a rank 1 tensor of order k that has been subject to Gaussian noise. We will begin by reviewing results surrounding the statistical limits of maximum likelihood estimation for this problem and discuss an geometric analogue of the well-known BBP phase transition from the matrix setting. We then discuss recent analyses of the behavior of this problem from an optimization perspective. While the threshold for estimation occurs at a finite signal-to-noise ratio, it is expected that one needs a polynomially diverging signal-to-noise ratio to be able to do so efficiently. We present a recent study of the thresholds for efficient recovery for a simple family of algorithms, Langevin dynamics and gradient descent, to better understand the mechanism for this diverging statistical-to-computational gap. I will report on recent works with Ben Arousâ??Gheissari on the algorithmic threshold and Lopatto-Miolane on the statistical threshold.
Aleksander Horawa : Motivic action on coherent cohomology of Hilbert modular varieties
- Number Theory ( 229 Views )A surprising property of the cohomology of locally symmetric spaces is that Hecke operators can act on multiple cohomological degrees with the same eigenvalues. We will discuss this phenomenon for the coherent cohomology of line bundles on modular curves and, more generally, Hilbert modular varieties. We propose an arithmetic explanation: a hidden degree-shifting action of a certain motivic cohomology group (the Stark unit group). This extends the conjectures of Venkatesh, Prasanna, and Harris to Hilbert modular varieties.
William Sokurski : Fourier operators on GL(2) for odd Adjoint powers
- Number Theory ( 229 Views )Recently A. Braverman, D. Kazhdan, and L. Lafforgue have interpreted Langlands' functoriality in terms of a generalized harmonic analysis on reductive groups that requires the existence of new spaces of functions and an associated, generally non-linear, involutive Fourier transform. This talk will discuss some of these objects involved in the local p-adic situation, after introducing some ideas and basic constructions involved. Specifically, the local Fourier transforms have a nice interpretation in terms of their spectral decomposition giving the gamma factors that appear in functional equations of L functions, which, in the standard case allows one to write down the epsilon factors attached to supercuspidal representations as non-abelian Gauss sums. For G=GL(2), we use the local Langlands correspondence to provide L and epsilon factors for odd adjoint power transfers and use this to interpret the Adjoint power Fourier-transform such that its spectral decomposition on supercuspidal representations is given explicitly by certain non-abelian Kloosterman sums, which we use to give a form of the Fourier operator.
Nadav Dym : Linear computation of angle preserving mappings
- Graduate/Faculty Seminar ( 223 Views )We will discuss recent work on computing angle preserving mappings (a.k.a. conformal mappings) using linear methods. We will begin with an intro/reminder on what these mappings are, and why would one to compute them. Then we will discuss the results themselves which show that when choosing a good target domain, computation of angle preserving mappings can be made linear in the sense that (i) They are a solution of a linear PDE (ii) They can be approximated by solving a finite dimensional linear system and (iii) the approximates are themselves homeomorphisms and "discrete conformal".
Jimmy Petean : On the Yamabe invariant of Riemannian products
- Geometry and Topology ( 219 Views )The Yamabe invariant of a closed manifold appears naturally when studying the total scalar curvature functional on the space of Riemannian metrics on the manifold. Computations are difficult, in particular in the positive case (when the manifold admits metrics of positive scalar curvarture, and there is no unicity of metrics of constant scalar curvature on a conformal class). In this talk I will review a little of what is known about the computation of the invariant and discuss some recent joint work with K. Akutagawa and L. Florit on the Yamabe constants of Riemannian products.
Jürgen Klüners : The negative Pell equation and the Cohen-Lenstra heuristic
- Number Theory ( 218 Views )For a (squarefree) integer d the negative Pell equation is given by: X^2 - d Y^2 = -1. It is easy to see that this equation has no solution over the integers, if d is negative or d is congruent to 3 modulo 4. In this talk we would like to study the asymptotic behavior of integers d such that this equation is solvable. This question is related to the behavior of the class group of the quadratic field generated by a square root of d. The distribution of those class groups is described by the Cohen-Lenstra heuristics.
Justin Curry : Studying Stratified Maps a la MacPherson
- Presentations ( 217 Views )This talk is motivated by the question "Given a stratified map, how are path components of the fiber organized?" Studying path components necessitates cosheaves, but the stratified assumption provides an elegant combinatorial description using MacPherson's entrance path category, which also controls the associated Leray sheaves. One of the goals of this talk will be to provide a self-contained exposition of these ideas, using a minimal amount of mathematical background. The talk will follow loosely a recent paper with Amit Patel, which is available on the arXiv as http://arxiv.org/abs/1603.01587 Connections with applied topology will also be described.
Abram Clark : Yielding in granular materials, from riverbeds to renormalization group
- Nonlinear and Complex Systems ( 217 Views )Granular materials are a part of a broad class of amorphous materials that display yield stress behavior. When the applied shear stress is below the yield stress, grains move temporarily, but only until finding a mechanically stable (MS) configuration that is able to resist the applied shear stress. Above the yield stress, the material is no longer able to find MS configurations. However, the geometrical reasons why MS states vanish at the yield stress is not well understood. In this talk, I will show evidence from molecular dynamics simulations that yielding in granular materials is akin to a second-order critical point, where the mechanical behavior is dominated by a correlation length that diverges at the yield stress. MS states exist above the yield stress for finite systems, but they vanish as the system size becomes large according to a critical scaling function. The packing fraction and coordination number for MS states are independent of the applied shear stress, implying that the critical behavior we observe is distinct from the well known jamming scenario. However, MS states at nonzero shear stress possess anisotropic force and contact networks, suggesting that the yield stress is set by the maximum anisotropy that can be realized in the large-system limit.
Max Lieblich : K3 surfaces in positive characteristic
- Algebraic Geometry ( 216 Views )I will describe some aspects of the geometry of K3 surfaces in positive characteristic, including derived-category replacements for the classical Torelli theorem, supersingular analogues of twistor spaces, and some consequences for the arithmetic of certain elliptic curves over function fields. Some of the work described is joint with Daniel Bragg, and some is joint with Martin Olsson.
Curtis Porter : Straightening out degeneracy in CR geometry: When can it be done?
- Geometry and Topology ( 216 Views )CR geometry studies boundaries of domains in C^n and their generalizations. A central role is played by the Levi form L of a CR manifold M, which measures the failure of the CR bundle to be integrable, so that when L has a nontrivial kernel of constant rank, M is foliated by complex manifolds. If the local transverse structure to this foliation still determines a CR manifold N, then we say M is CR-straightenable, and the Tanaka-Chern-Moser classification of CR hypersurfaces with nondegenerate Levi form can be applied to N. It remains to classify those M for which L is degenerate and no such straightening exists. This was accomplished in dimension 5 by Ebenfelt, Isaev-Zaitzev, and Medori-Spiro. I will discuss their results as well as my recent progress on the problem in dimension 7 (http://arxiv.org/abs/1511.04019).