## Jesse Zhang : Geodesic complexity of convex polyhedra

- Mathematical Biology ( 102 Views )Geodesic complexity of the d-dimensional boundary S of a convex polytope of dimension d+1 is intimately related to the combinatorics of nonoverlapping unfolding of S into a Euclidean space R^d following Miller and Pak (2008). This combinatorics is based on facet sequences, which are lists of adjacent facets traversed by geodesics in S. Our main result bounds the geodesic complexity of S from above by the number of distinct maximal facet sequences traversed by shortest paths in S. For d=2, results from the literature on nonoverlapping unfolding imply that this bound is polynomial in the number of facets. In arbitrary dimension d, a reinterpretation of conjectures by Miller and Pak (2008) leads to the conjecture that the geodesic complexity of S is polynomial in the number of facets. The theory and results developed here hold more generally for convex polyhedral complexes. This is joint work with Ezra Miller.

## Jimmy He : Shift invariance of half space integrable models

- Probability ( 90 Views )I'll discuss work on shift invariance in a half space setting. These are non-trivial symmetries allowing certain observables of integrable models with a boundary to be shifted while preserving their joint distribution. The starting point is the colored stochastic six vertex model in a half space, from which we obtain results on the asymmetric simple exclusion process, as well as for the beta polymer through a fusion procedure, both in a half space setting. An application to the asymptotics of a half space analogue of the oriented swap process is also given.