Curtis Porter : CRash CouRse in CR Geometry
- Graduate/Faculty Seminar,Uploaded Videos ( 2252 Views )CR geometry studies real hypersurfaces in complex vector spaces and their generalizations, CR manifolds. In many cases of interest to complex analysis and PDE, CR manifolds can be considered ``curved versions" of homogeneous spaces according to Elie Cartan’s generalization of Klein’s Erlangen program. Which homogeneous space is the ``flat model" of a CR manifold depends on the Levi form, a tensor named after a mathematician who used it to characterize boundaries of pseudoconvex domains. As in the analytic setting, the Levi form plays a central role in the geometry of CR manifolds, which we explore in relation to their homogeneous models.
Margaret Regan : Using homotopy continuation to solve parametrized polynomial systems in applications
- Graduate/Faculty Seminar,Uploaded Videos ( 1832 Views )Many problems that arise in mathematics, science, and engineering can be formulated as solving a parameterized system of polynomial equations which must be solved for given instances of the parameters. One way to solve these systems is to use a common technique within numerical algebraic geometry called homotopy continuation. My talk will start with background on homotopy continuation and parametrized polynomial systems, followed by applications to problems in computer vision and kinematics. Of these, I will first present a new approach which uses locally adaptive methods and sparse matrix calculations to solve parameterized overdetermined systems in projective space. Examples will be provided in 2D image reconstruction to compare the new methods with traditional approaches in numerical algebraic geometry. Second, I will discuss a new definition of monodromy action over the real numbers which encodes tiered characteristics regarding real solutions. Examples will be given to show the benefits of this definition over a naive extension of the monodromy group (over the complex numbers). In addition, an application in kinematics will be discussed to highlight the computational method and impact on calibration.
Demetre Kazaras:The geometry and topology of positive scalar curvature
- Graduate/Faculty Seminar,Uploaded Videos ( 1663 Views )I will give an informal overview of the history and status of my field. Local invariants of Riemannian metrics are called curvature, the weakest of which is known as "scalar curvature." The study of metrics with positive scalar curvature is very rich with >100 year old connections to General Relativity and smooth topology. Does this geometric condition have topological implications? The answer turns out to be "yes," but mathematicians continue to search for the true heart of the positive scalar curvature conditions.
Stochastic and continuum dynamics in intracellular transport
- Graduate/Faculty Seminar,Uploaded Videos ( 1111 Views )The cellular cytoskeleton is made up of protein polymers (filaments) that are essential in proper cell and neuronal function as well as in development. These filaments represent the roads along which most protein transport occurs inside cells. I will discuss several examples where questions about filament-cargo interactions require the development of novel mathematical modeling, analysis, and simulation. Protein cargoes such as neurofilaments and RNA molecules bind to and unbind from cellular roads called microtubules, switching between bidirectional transport, diffusion, and stationary states. Since these transport models can be analytically intractable, we have proposed asymptotic methods in the framework of partial differential equations and stochastic processes which are useful in understanding large-time transport properties. I will discuss a recent project where we use stochastic modeling to understand how filament orientations may influence sorting of cargo in dendrites during neural development and axonal injury.
Holden Lee : Recovering sparse Fourier signals, with application to system identification
- Graduate/Faculty Seminar,Uploaded Videos ( 1090 Views )The problem of recovering a sparse Fourier signal from samples comes up in signal processing, imaging, NMR spectroscopy, and machine learning. Two major challenges involve dealing with off-grid frequencies, and dealing with signals lacking separation between frequencies. Without a minimum separation condition, the problem of frequency recovery is exponentially ill-conditioned, but the signal can still be efficiently recovered in an "improper" manner using an appropriate filter. I will explain such an algorithm for sparse Fourier recovery, and the theory behind why it works - involving some clever analytic inequalities for Fourier-sparse signals. Finally, I will discuss recent work with Xue Chen on applying these ideas to system identification. Identification of a linear dynamical system from partial observations is a fundamental problem in control theory. A natural question is how to do so with statistical rates depending on the inherent dimensionality (or order) of the system, akin to the sparsity of a signal. We solve this question by casting system identification as a "multi-scale" sparse Fourier recovery problem.
Yiming Zhong : Fast algorithm for Radiative transport
- Graduate/Faculty Seminar,Uploaded Videos ( 991 Views )This talk consists of two aspects about solving the radiative transport through the integral formulation. The radiative transport equation has been numerically studied for many years, the equation is difficult to solve due to its high dimensionality and its hyperbolic nature, in recent decades, the computers are equipped with larger memories so it is possible to deal with the full-discretization in phase space, however, the numerical efficiency is quite limited because of many issues, such as iterative scheme, preconditioning, discretization, etc. In this talk, we first discuss about the special case of isotropic scattering and its integral formulation, then walk through the corresponding fast algorithm for it. In the second part, we try to trivially extend the method to anisotropic case, and talk about the method’s limitation and some perspectives in both theory and numerics.
Eliza O’Reilly : Stochastic and Convex Geometry for Complex Data Analysis
- Colloquium Seminar,Colloquium,Uploaded Videos ( 823 Views )Many modern problems in data science aim to efficiently and accurately extract important features and make predictions from high dimensional and large data sets. Naturally occurring structure in the data underpins the success of many contemporary approaches, but large gaps between theory and practice remain. In this talk, I will present recent progress on two different methods for nonparametric regression that can be viewed as the projection of a lifted formulation of the problem with a simple stochastic or convex geometric description, allowing the projection to encapsulate the data structure. In particular, I will first describe how the theory of stationary random tessellations in stochastic geometry can address the computational and theoretical challenges of random decision forests with non-axis-aligned splits. Second, I will present a new approach to convex regression that returns non-polyhedral convex estimators compatible with semidefinite programming. These works open many directions of future work at the intersection of stochastic and convex geometry, machine learning, and optimization.
David Aldous: Probability Seminar
- Probability,Uploaded Videos ( 649 Views )David Aldous, Probability Seminar Sept 30, 2021 TITLE: Can one prove existence of an infectiousness threshold (for a pandemic) in very general models of disease spread? ABSTRACT: Intuitively, in any kind of disease transmission model with an infectiousness parameter, there should exist a critical value of the parameter separating a very likely from a very unlikely resulting pandemic. But even formulating a general conjecture is challenging. In the most simplistic model (SI) of transmission, one can prove this for an essentially arbitrary large weighted contact network. The proof for SI depends on a simple lemma concerning hitting times for increasing set-valued Markov processes. Can one extend to SIR or SIS models over similarly general networks, where the lemma is no longer applicable?
Calvin McPhail-Snyder : Making the Jones polynomial more geometric
- Geometry and Topology ( 370 Views )The colored Jones polynomials are conjectured to detect geometric information about knot complements, such as hyperbolic volume. These relationships ("volume conjectures") are known in a number of special cases but are in general quite mysterious. In this talk I will discuss a program to better understand them by constructing holonomy invariants, which depend on both a knot K and a representation of its knot group into SL_2(C). By defining a version of the Jones polynomial that knows about geometric data, we hope to better understand why the ordinary Jones polynomial does too. Along the way we can obtain more powerful quantum invariants of knots and other topological objects.
Neelam Saikia : Frobenius Trace Distributions for Gaussian Hypergeometric Functions
- Number Theory ( 326 Views )In the 1980’s, Greene defined hypergeometric functions over finite fields using Jacobi sums. The framework of his theory establishes that these functions possess many properties that are analogous to those of the classical hypergeometric series studied by Gauss and Kummer. These functions have played important roles in the study of Ap ́ery-style supercongruences, the Eichler-Selberg trace formula, Galois representations, and zeta-functions of arithmetic varieties. In this talk we discuss the distributions (over large finite fields) of natural families of these functions. For the 2F1 functions, the limiting distribution is semicircular, whereas the distribution for the 3F2 functions is the more exotic Batman distribution.
Dick Hain : Hecke actions on loops and periods of iterated itegrals of modular forms
- Number Theory ( 314 Views )Hecke operators act on many invariants associated to modular curves and their generalizations. For example, they act on modular forms and on cohomology groups of modular curves. In each of these cases, they generate a semi-simple, commutative algebra. In the first part of this talk, I will recall (in friendly, elementary, geometric terms) what Hecke operators are and how they act on the standard invariants. I will then show that they also act on loops in modular curves (aka, conjugacy classes in modular groups). In this case, the Hecke operators generate a non-commutative subalgebra of the vector space generated by the conjugacy classes, which leads to a very natural non-commutative generalization of the classical Hecke algebra. In the second part of the talk will discuss why one might want do construct such a Hecke action. As a prelude to this, I will explain why this Hecke action commutes with the natural action of the absolute Galois group after taking profinite completions. And, in the unlikely event that I have sufficient time, I will also explain how (after taking the appropriate completion) this Hecke action is also compatible with Hodge theory.
Shweta Bansal : Got flu? Using small and big data to understand influenza transmission, surveillance and control
- Mathematical Biology ( 301 Views )Traditional infectious disease epidemiology is built on the foundation of high quality and high accuracy data on disease and behavior. While these data are usually characterized by smallsize, they benefit from designed sampling schemes that make it possible to make population-level inferences. On the other hand, digital infectious disease epidemiology uses existing digital traces, re-purposing them to identify patterns in health-related processes. In this talk, I will discuss our work using data from small epidemiological studies as well as administrative “big data” to understand influenza transmission dynamics and inform disease surveillance and control.
Jessica Fintzen : Frontiers in Mathematics Lecture 1: Representations of p-adic groups
- Presentations ( 294 Views )The Langlands program is a far-reaching collection of conjectures that relate different areas of mathematics including number theory and representation theory. A fundamental problem on the representation theory side of the Langlands program is the construction of all (irreducible, smooth, complex) representations of certain matrix groups, called p-adic groups. In my talk I will introduce p-adic groups and provide an overview of our understanding of their representations, with an emphasis on recent progress. I will also briefly discuss applications to other areas, e.g. to automorphic forms and the global Langlands program.
Yiannis Sakellaridis : Moment map and orbital integrals
- Algebraic Geometry ( 284 Views )In the Langlands program, it is essential to understand spaces of Schwartz measures on quotient stacks like the (twisted) adjoint quotient of a reductive group. The generalization of this problem to spherical varieties calls for an understanding of the double quotient H\G/H, where H is a spherical subgroup of G. This has been studied by Richardson for symmetric spaces. In this talk, I will present a new approach, for spherical varieties "of rank one", based on Friedrich Knop's theory of the moment map and the invariant collective motion.
Viktor Burghardt : The Dual Motivic Witt Cohomology Steenrod Algebra
- Geometry and Topology ( 279 Views )Over a field k, the zeroth homotopy group of the motivic sphere spectrum is given by the Grothendieck-Witt ring of symmetric bilinear forms GW(k). The Grothendieck-Witt ring GW(k) modulo the hyperbolic plane is isomorphic to the Witt ring of symmetric bilinear forms W(k) which further surjectively maps to Z/2. We may take motivic Eilenberg-Maclane spectra of Z/2, W(k) and GW(k). Voevodsky has computed the motivic Steenrod algebra of HZ/2 and solved the Bloch-Kato conjecture with its help. We move one step up in the above picture; we study the motivic Eilenberg-Maclane spectrum corresponding to the Witt ring and compute its dual Steenrod algebra.
Jordan S. Ellenberg : Stability and Representations
- Gergen Lectures ( 278 Views )The notion of stability --speaking loosely, "sometimes an infinite sequence of vector spaces eventually starts being constant" -- appears in many branches of mathematics, perhaps most notably topology, where Harer's theorem about the stability of the homology of mapping class groups has driven decades of work. Some natural sequences of vector spaces are evidently NOT eventually constant: for instance, the space Q_n of quadratic polynomials in n variables has dimension (1/2)n(n-1), so gets larger and larger as n goes to infinity. On the other hand, Q_n carries an action of the symmetric group S_n by permutation of coordinates. We will discuss a new framework which allows us to speak meaningfully about what it means for a sequence of representations of S_n to be stable. It turns out that the structures we define are ubiquitous, appearing in topology (e.g. homology groups of configuration spaces and of moduli spaces of curves) algebraic combinatorics (e.g. the graded pieces of diagonal coinvariant algebras) and algebraic geometry (e.g. spaces of polynomials on discriminant and rank varieties.) We prove, for instance, that all these sequences of vector spaces have dimension which is eventually a polynomial in n.
Curtis Porter : Spinning Black Holes and CR 3-Folds
- Geometry and Topology ( 276 Views )Some physically significant solutions to Einstein's field equations are spacetimes which are foliated by a family of curves called a shear-free null geodesic congruence (SFNGC). Examples include models of gravitational waves that were recently detected, and rotating black holes. The properties of a SFNGC induce a CR structure on the 3-dimensional leaf space of the foliation. The Kerr Theorem says that the family of metrics associated to a SFNGC contains a conformally flat representative iff the corresponding CR structure is embeddable in a real hyperquadric. Using Cartan's method of moving frames, we can classify which Levi-nondegenerate CR 3-folds are embeddable in the hyperquadric.
Richard Schoen : Positive scalar curvature and connections with relativity
- Gergen Lectures ( 275 Views )In this series of three lectures we will describe positivity conditions on Riemannian metrics including the classical conditions of positive sectional, Ricci, and scalar curvature. We will discuss open problems and recent progress including our recent proof of the differentiable sphere theorem (joint with Simon Brendle). That proof employs the Ricci flow, so we will spend some time explaining that technique. Finally we will discuss problems related to positive scalar curvature including some high dimensional issues which occur in that theory. If time allows we will describe recent progress on black hole topologies. These lectures, especially the first two, are intended for a general audience.
Sarah Schott : Computational Complexity
- Graduate/Faculty Seminar ( 274 Views )What does it mean for a problem to be in P, or NP? What is NP completeness? These are questions, among others, that I hope to answer in my talk on computational complexity. Computational complexity is a branch of theoretical computer science dealing with analysis of algorithms. I hope to make it as accessible as possible, with no prior knowledge of algorithms and running times.
Ana Barros : Down the Predictability Hole - Searching for Metrics to Understand and Replace Physical Parameterizations of Nonlinear Processes in Atmospheric Models
- Nonlinear and Complex Systems ( 274 Views )Short-term forecast skill in weather forecasting over the last 15 years has been achieved mostly through data assimilation. Predictive ability however has hit barriers that have not been overcome by increasing computer power and model resolution. Model tuning has come out from hiding, and it is arguably ``trending'' in peer-review over the last 2-3 years. The open question is what (and how) to do next. I will address this question relying on two-decades of research on the representation of moist processes in the atmosphere, specifically targeting the following issues: 1) Evaluating Models to Elucidate the Physics that Matter 2) Detecting and Isolating Sources, Sinks and Barriers of Predictability 3) Meeting the Utility Challenge - Projections vs Predictability
Ben Krause : Dimension independent bounds for the spherical maximal function on products of finite groups
- Applied Math and Analysis ( 272 Views )The classical Hardy-Littlewood maximal operators (averaging over families of Euclidean balls and cubes) are known to satisfy L^p bounds that are independent of dimension. This talk will extend these results to spherical maximal functions acting on Cartesian products of cyclic groups equipped with the Hamming metric.
Nelia Charalambous : On the $L^p$ Spectrum of the Hodge Laplacian on Non-Compact Manifolds
- Geometry and Topology ( 271 Views )One of the central questions in Geometric Analysis is the interplay between the curvature of the manifold and the spectrum of an operator. In this talk, we will be considering the Hodge Laplacian on differential forms of any order $k$ in the Banach Space $L^p$. In particular, under sufficient curvature conditions, it will be demonstrated that the $L^p\,$ spectrum is independent of $p$ for $1\!\leq\!p\!\leq\! \infty.$ The underlying space is a $C^{\infty}$-smooth non-compact manifold $M^n$ with a lower bound on its Ricci Curvature and the Weitzenb\"ock Tensor. The further assumption on subexponential growth of the manifold is also necessary. We will see that in the case of Hyperbolic space the $L^p$ spectrum does in fact depend on $p.$ As an application, we will show that the spectrum of the Laplacian on one-forms has no gaps on certain manifolds with a pole and on manifolds that are in a warped product form. This will be done under weaker curvature restrictions than what have been used previously; it will be achieved by finding the $L^1$ spectrum of the Laplacian.
Francis Brown : Periods, Galois theory and particle physics: General introduction to periods
- Gergen Lectures ( 270 Views )A period is a certain kind of complex number which can be written as an integral of algebraic quantities. Kontsevich and Zagier conjectured that all identities between periods can be obtained from the elementary rules of calculus. After discussing several examples I will focus on the case of multiple zeta values which were first introduced in a special case by Euler, and now occur in numerous branches of mathematics. They satisfy many families of relations which are the subject of several open conjectures.
David Shea Vela-Vick : The equivalence of transverse link invariants in knot Floer homology
- Presentations ( 259 Views )The Heegaard Floer package provides a robust tool for studying contact 3-manifolds and their subspaces. Within the sphere of Heegaard Floer homology, several invariants of Legendrian and transverse knots have been defined. The first such invariant, constructed by Ozsvath, Szabo and Thurston, was defined combinatorially using grid diagrams. The second invariant was obtained by geometric means using open book decompositions by Lisca, Ozsvath, Stipsicz and Szabo. We show that these two previously defined invariant agree. Along the way, we define a third, equivalent Legendrian/transverse invariant which arises naturally when studying transverse knots which are braided with respect to an open book decomposition.
Nils Bruin : Prym varieties of genus four curves
- Algebraic Geometry ( 257 Views )Many arithmetic properties of hyperbolic curves become apparent from embeddings into abelian varieties, in particular their Jacobians. For special curves, particularly those that arise as unramified double covers of another curve (of genus g), the Jacobian variety itself is decomposable. This leads to Prym varieties. These are principally polarized abelian varieties of dimension g-1. Having an explicit description of these varieties is an essential ingredient in many computational methods. We discuss an explicit construction for g equal to 4. This is joint work with Emre Can Sertoz.
Lenhard Ng : Symplectic Techniques in Topology: An Informal Introduction
- Graduate/Faculty Seminar ( 254 Views )In geometry, there are certain structures that are "rigid" (like Riemannian manifolds) and others that are "flexible" (like topological manifolds). Symplectic geometry lies in between these two extremes and incorporates some attractive features of both. One consequence is that symplectic techniques have recently been used, to great effect, to give combinatorial approaches to questions in topology that previously required difficult gauge-theoretic and analytic techniques. I will introduce symplectic structures and describe some recent developments linking them to the study of three-dimensional manifolds and knots. No real background will be assumed.
John McCuan : Minimal graphs with jump discontinuities
- Geometry and Topology ( 254 Views )I will discuss some examples of minimal graphs with jump discontinuities in their boundaries. Robert Huff and I constructed these examples in response to a question of John Urbas: Is it possible for a minimal graph over a smooth annular domain to have an isolated jump discontinuity on the inner boundary component? I will also give a brief overview of the boundary consistency problem for Di Giorgi's generalized solutions of the minimal surface equation and discuss this question in that context. The construction of the examples uses the Weierstrass representation and the developing map introduced by Huff in the study of capillary problems.